Physiology week 1 – Introductory VIVAs

TOPIC: Cvelie AMP	NUMBER:

OPENING QUESTION	Describe the synthesis and metabolism of	PROMPTS	COMMENTS
POINTS REQUIRED	1. Formed inside the membrane	1	2/3 to pass
	2. ATP is converted to cAMP via adenyl cyclase	2	
	3. Metabolised by phospho-diesterase	3	
SECOND QUESTION (if needed)	Discuss the function of cAMP.		
POINTS REQUIRED	Intracellular second messenger	1	
	2. Stimulate protein synthesis	2	
	3. Activate an intracellular enzyme system in the neurone $$	3	
	4	4	

TOPIC: Cell Transport_____NUMBER: ____

OPENING QUESTION	List some ways in which substances are transported across cell membranes	PROMPTS	COMMENTS
POINTS REQUIRED	1. Exocytosis	1	3/5 to pass
	2. Movement across ion channels	2	
	3. Endocytosis	3	
	4. Active transport	4	
	5. Secondary active transport	5	
SECOND QUESTION (if needed)	Describe the sodium potassium pump.		
POINTS REQUIRED	1. Energy dependent (ATP to ADP)	1	2/2
	Na+ ions going out in ex-change for 2 K+ going into cells via a carrier protein	2	
THIRD QUESTION (if needed)	Give an example of secondary active transport		Bonus points
POINTS REQUIRED	Co-transport eg: glucose with sodium, sodium with amino acids	1	
	Counter-transport system: eg. Sodium counter-transport with calcium and hydrogen ions	2	

of intercellular to the other? and growth factors), paracr		Cell to cell via gap junctions. Chemical messengers in ECF: neural (neurotransmitters at synapses), endocrine (hormones and growth factors), paracrine (products of cells diffuse to neighbours). Autocrine = cell secretes messenger that acts on itself. Same chemical can function in several ways. Juxtacrine = molecules attached to membrane that attaches to another cell.
	How do receptors respond to variations in messengers?	Receptors change with physiological variations: messenger in excess -> decrease receptors (down regulation, internalisation, desensitisation); deficient messenger -> increase receptors (up regulation). Exception is Angiotensin 11 in adrenal cortex.
	How do messengers oct?	Via ion channels (Ach, nicotinic, noradrenalin.); transcription of mRNAs (steroids, thyroid hormone.); activation of phospholipase C (angiotensin 11, noradrenalin. vasopressin); production of cAMP (noradrenalin); production of cGMP; increased activity tyrosine kinase (insulin); increased activity serine or threonine kinase (TGF, MAPK).
3.3 Transport across cell membranes	Describe the mechanisms of tri across cell membranes? Give an example of active tran	Exo: ER to Golgi apparatus to granules/vesicles to cell membrane. Endo: phagocytosis, pinocytosis = liquid.

TOPIC: Transport Across Cell Membranes (inc Na-K Pump) NUMBER:

OPENING		601 D TT1T6
QUESTION	Describe the structure and function of the sodium potassium ATP ase pump	COMMENTS
POINTS	1.	Need 3 / 5
REQUIRED	Antiport: catalyses hydrolysis of ATP to ADP to move 3 Na out cell in exchange for 2 K in.	(1 or 2, 3, 4 or 5)
	Maintains electrochemical gradient ECF (Electrogenic pump 3+ out / 2+ in = net 1+ out) and is large part of basal energy consumption - 33% energy use by cells (70% neurons)	
	Coupled to transport other substances (secondary active transport) e.g.glucose in SI mucosa,	
	2. α and ß subunits which pass through cell membrane	
	Both heterogeneous	
	α subunit intracellular binding sites for Na & ATP α subunit extracellular binding sites for K & ouabain β subunit has no binding sites Na / K Variable distribution of α 1 + 2 and β 1+2 subunits	
	 When Na binds to α subunit, ATP also binds. ATP is converted to ADP causing change in protein configuration extruding Na out of cell. 	
	K then binds extracellularly dephosphorylating α subunit which returns to original configuration releasing K into cytoplasm	
PROMPTS	Describe the structure of the sodium potassium pump	
PROMP15	Describe how the sodium potassium pump works What are the effects of the sodium potassium pump?	

TOPIC: Body composition______NUMBER:

OPENING QUESTION	How is water distributed through the body compartments?	PROMPTS	COMMENTS
POINTS REQUIRED	1 TBW is 60% of body weight	How much water is in the intracellular space?	
	2 ICF 2/3 of TBW		ICF/ECF proportions needed
	3 ECF 1/3 of TBW		
	4 Interstitial ¾ of ECF		
	5 Plasma ¼ of ECF		
SECOND QUESTION	How do age and gender affect total body water?		
POINTS REQUIRED	1 Decreases with age		
	2 Higher in males		