Oedema, Shock and Burns VIVAs (Pathology)

Aug 2015

2015.1.A.1

Question 1	What is Shock?	State where reduced cardiac output or effective blood volume results in impaired tissue perfusion and	Bold concepts
Septic Shock (pp 129-133)		cellular hypoxia	
Subject: Path LOA: 1	How do microbes initiate septic shock? Prompt: What are the mechanisms	Interaction with innate cells of immune system – examples neutrophils, macrophages, monocytes Interaction with Humoral cells of immune system to activate complement & coag pathways Direct action on endothelium (complex, not fully understood) Toll-like receptors recognise microbial elements, and other mechs End result is mediator release examples TNF,IL-6, 8, 10, PAF PAI-1, HMGB1	2 of 3 plus examples of each (at least 1) + understand role of mediators
	When DIC develops, what is the process?	Induction of procoagulant state by: 1 Increased TF production 2 Decreased production of Protein C 3 TF pathway inhibitor Thrombomodulin 4 Decreased fibrinolysis by increasing plasminogen activator inhibitor, Combined with stasis (decr washout of activated coag factors) results in activation of thrombin & and fibrin rich thrombi	2 of 4 & understanding of process
	What factors determine the severity and outcome of septic shock in an individual?	Extent and virulence of infection Immune status of host Presence of other co-morbid conditions Pattern and level of mediator production	Bonus Q – no pass criteria

2013 2 D 1

PATHOLOGY			
Question 3	What is hypovolaemic shock?	Systemic hypoperfusion due to reduced effective circulating blood volume resulting in impaired tissue perfusion and cellular hypoxia	Bold to pass
LOA: 1		tissue perrusion and centual hypoxia	
	Describe the stages of hypovolaemic shock	2. A. Non- Progressive phase – reflex compensatory mechanisms activated to	All 3 phases to pass.
	Prompt: What compensatory mechanisms	maintain vital organ perfusion.	2A.
	are involved?	Variety of neurohumoral mechanisms	Bold to pass + 3 features
		activated to help maintain cardiac output	(prompt if necessary)
		and blood pressure (baroreceptors	(prompt in mecessary)
		reflexes, release of catecholamines,	
		activation of renin-angiotensin axis, ADH	
		release and increased sympathetic output	
		resulting in: tachycardia, peripheral	
		vasoconstriction, and renal conservation of	
		fluid with decreased urine output.	
		Coronary and cerebral vessels less sensitive	
		to sympathetic response and blood flow/	
		O ₂ delivery spared.	
		B. Progressive phase- tissue hypoperfusion and	
		worsening circulatory and metabolic imbalance	2B
		including acidosis.	Bold to pass.
		Widespread tissue hypoxia resulting in anaerobic	
		glycolysis with excess lactic acidosis production	
		blunts vasomotor response → peripheral pooling,	
		hypoxic injury, DIC, vital organs begin to failure	
		C. Irreversible phase - after body has incurred	
		cellular and tissue injury so severe that even if	
		haemodynamic defects are corrected, survival is	Bold to pass
		not possible	
	What happens at the cellular and tissue	 Widespread cell injury 	
	level during the irreversible phase?	- lysosomal enzyme release	
		 nitric oxide → decreased myocardial contractility 	3 features to pass
		 acute tubular necrosis -> acute renal failure, 	
		 ischaemic gut→ bacteraemic shock 	
		 severe hypotension, unconscious, anuric 	
		 pre-cardiac arrest - > death 	

2013.1.2

		MITO WELDOL (Essential III DOIG)	INOTES
Question 1:	 What are the mechanisms 	1.↑ hydrostatic pressure – impaired venous return, eg CHF,Constrictive pericarditis,ascites,venous	3 out of 5 bold,
Oedema	of oedema formation?	obstruction(internal/external +immobility), arteriolar dilatation eg heat	example from
formation		Decr plasm oncotic pressure (hypoproteinaemia) – nephrotic syndrome, ,malnutrition, protein losing	each
LOA: 1		enteropathy.	Cucii
		Lymphatic obstruction - inflammatory, neoplastic, post-surgery/radiation	
		Sodium and water retention –XS salt with renal insufficiency, incr renin-angiotensin-aldosterone	
		secretion	
		Inflammation –acute/chronic, angiogenesis	
	2. What is the pathogenesis	2. Decreased cardiac output, decr renal perfusion, secondary aldosteronism, Incr blood volume, incr	
	of cardiogenic oedema?	venous pressure	At least 3 steps.

2012.1.2

Question 2	How do microbes initiate septic shock?	 Interaction with innate cells of immune system- neutrophils. macrophages and monocytes 	at least 3 to pass
Septic	31 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	2. Humoral interaction to activate complement and coagulation path	
shock		3. Direct endothelial action	
		4. End result is mediator release TNF,IL 6,8,10, NO,PAF, PAI-1	
LOA: 1			155
	What are the effects of the mediators on the coagulation pathway?	Microvascular thrombosis, decreased fibrinolysis, DIC	2/3 to pass
	What are the consequent effects on tissues?	Tissue ischaemia, multi organ failure	Either

2011.2.2

Question 2 LOA: 1	1 What is hypovolaemic shock?	Systemic hypoperfusion due to reduced effective circulating volume, cellular hypoxia	Bold
	2 Describe the stages of hypovolaemic shock.	Non Progressive phase. Reflex compensation, vital organ perfusion. Baroreceptors, catechol, renin/angiotensin, ADH, sympathy stim.(†HR, periph vasocons, 1 urine)	3 phases to pass with details 4/9
		Progressive Phase Anaerobic glycolysis, lactic acidosis, ↓ vasomotor response, → periph pooling, hypoxic injury, DIC, vital organ failure	3/7
V-2		Irreversible Phase Iysosomal enz release., NO→	2/4

2011.2.3

Question 1:	1) What is the pathogenesis of oedema?	1.Hydrostatic pressure and osmotic pressure normally balance to ensure that net fluid into and out of	Bold to pass
LOA: 1		capillaries remains relatively equal with the little over removed by lymphatics. Increased HP or diminished OP or overload of the lymphatics will	
	How is oedema categorised and provide some examples?	result in oedema. 2.Increased hydrostatic pressure - impaired venous return, eg. CCF, constrictive pericarditis, ascites, venous obstruction (internal or external + immobility); arteriolar dilatation eg. heat, neurohumeral dysregulation Reduced plasma osmotic pressure (hypoproteinaemia) - nephrotic syndrome, ascites, malnutrition, protein losing gastroenteropathy Lymphatic obstruction - inflammatory, neoplastic, postsurgical, postirradiation Sodium retention - excessive salt with renal insufficiency, increased tubular reabsorption of sodium (renal hypoperfusion, increased renin-angiotensin-aldosterone secretion) Inflammation - acute, chronic, angiogenesis	3 of 5 bold to pass with one example each category quoted

2011.1.1

Question 2. Septic Shock	How do microbial constituents initiate septic shock?	Interact with cells of the innate immune system (Neutrophils/Macrophages/Others) to release inflammatory mediators (& immunosuppressants) Interact with humoral elements of innate immunity to activate complement and coagulation pathways Act on endothelium	2 of 3 bold
	What is the effect of endothelial cell activation and injury during septic shock? PROMPT; What happens in the vessel?	Thrombosis Increased vascular permeability Vasodilation	2 of 3
	3. How does endothelial activation result in DIC (disseminated intravascular coagulation)?	Sepsis favours coagulation a. Increased tissue factor production b. Decreased fibrinolysis c. Stasis	Consumptive and some detail
	PROMPT; what mechanisms contribute to the coagulapathy in DIC	d. Decreased washout of activated coagulation factors e. Results in multiple fibrin rich thrombi 2. Increased hypoperfusion Consumption Coagulopathy = DIC	

2010.1.3

Question 2: Oedema	What factors govern the movement of fluid between the vascular and interstitial spaces? (30%)	Hydrostatic Pressure – Osmotic Pressure – protein/ Na Normal capillary walls- most protein retained Small fluid out art end Most back venous end Small amount back via lymphatics	3 concepts mentioned A > c > V May know some Pressures, may mention gravity/ leg v head. Capillaries are fluid leak vessels. Normal tissue flow important. Thoracic duct return of lymphatics
	What are the major mechanisms of oedema formation (with examples)? 70%	>Increased Hydrostatic Pressure (local- DVT/ systemic- CCF)/venous obstruction Oncotic P (mainly prot loss e.g. Nephrotic syndrome or poor production eg cirrhosis/ malnutrition or loss via gut) Capillary leak-(inflammatory injury/ systemic / infection) Obstructive lymphaties- e.g. lymphoderm/ tumour/ op etc Na retention with H2O (renal insuff) renin angio)- mainly dilutional	3 key features + a couple of examples

2009.1

Question 2: Septic shock	What is an endotoxin?	Bacterial cell wall Lipopolysaccharides usually from Gram -bacilli. Consists of a generic fatty acid core and a complex polysaccharide coat unique for each species.	Bold
	How does an endotoxin cause septic shock?	Dose dependent activation of neutrophils, macrophages and monocytes → mediator release → local/systemic inflam. response. Activation via: LPS binding prot. + CD14 receptor via IC toll I receptor. Mediators: TNF, IL-1, 6, 8, chemokines → cytokine release Low dose: enhanced local inflammatory response and clearance of infection. Moderate dose: fever, procoagulant activity. High dose: Syndrome of septic shock Systemic vasodilatation Decreased myocardial contractility Widespread endothelial injury → alveolar capillary damage (ARDS) Activation coag system → DIC	3/4 needed

2014.1.A.1

Question 2	How are thermal burns classified?	According to depth of injury:	Bold required
Thermal Injury		Superficial – confined to epidermis	
(Robbins pp 421-422)		Partial thickness – extends to dermis	
(NOBBINS PP 421 422)		Full thickness – involves subcutaneous tissue	
Subject: Path	What are the potential complications	Early:	2 early and 2
LOA: 1	of thermal burns?	Hypovolaemic shock (especially with >20% BSA)	late
		Compartment syndrome (circumferential LL burn)	
		 Associated injuries (eg inhalational burn, CO poisoning) 	
		Airway compromise	
		Hypermetabolic state	
		Late:	
		Infection / sepsis (Pseudomonas)	
		ARDS	
		Multi organ failure	
		Skin grafting, scarring / cosmetic	
		Psychological	
	How do you determine the extent of burns?	TBSA calculation notoriously inaccurate. Does not include superficial burns • Wallace "rule of nines"/Lund & Browder diagram	Mention 1 method

2011.2.2

Question 5 Thermal injury LOA: 2	How are thermal burns classified? (Prompt as to morphological depth classification?)	Superficial-confined to epidermis Partial thickness-involves dermis Full thickness-extend to the subcutaneous tissue	Bold
	What are the complications of a thermal burn? (Prompt for late)	Early vs late Early-hypovolaemic shock with >20% BSA, pain, inhalational lung injury + airway oedema Late- sepsis (pseudomonas), MSOF, acute lung injury, scarring, cosmetic deformity, psychological	Need 2 early & 2 late complication to pass