VAQ 2008.2.3

An 83 year old woman presents with a three day history of malaise and polyuria. She has a past history of Type 1 Diabetes and Hypertension. Her observations are:

HR	100	/min	
BP	183/65	mmHg supine	
GCS	14	M6, V5, E3	
O ₂ saturation	100%	O ₂ 6 L/min via Hudson mask.	
			Reference Range
Na	125	mmol/L	(135-145)
K	6.0	mmol/L	(3.2-4.5)
C1	81	mmol/L	(98-106)
Bicarbonate	7	mmol/L	(22-28)
Urea	25.0	mmol/L	(3.0-8.0)
Creatinine	262	µmol/L	(50-100)
Glucose	54.5	mmol/L	(3.5-5.5)
Osmolality	337	mmol/Kg	(275-295)

This lady most likely has DKA, with a history of IDDM, polyuria, and lab evidence of hyperglycaemia and HAGMA. She will require treatment with fluids and insulin, with careful surveillance of serum potassium, and assessment for an underlying precipitant. High blood pressure with a wide pulse pressure is noted which may reflect an underlying precipitant or pre-existing condition.

Na

moderate hyponatraemia corrected for hyperglycaemia Na + (delta Glu / 3) = 125 + 16 = 141 i.e. **pseudohyponatraemia**

Κ

moderate hyperkalaemia
increased intake
endogenous
rhabdo/TLS
exogenous
potassium supplement – oral / IV
transcellular shift
acidosis (implied by low bicarbonate and clinical stem)
reduced output
renal impairment
acute implied by urea/creatinine
may have chronic impairment – age/hypertension
potassium sparing diuretics
thiazide/spironolactone (check meds)

moderate hypochloraemia

corrected for hyperglycaemia – same as above 81+16 = 97 = minimal change / pseudohypochloraemia likely reflects passive shift to maintain electroneutrality suggests against NAGMA (hyperchloraemia expected)

Osmolarity

CI

1.8*Na+glu+urea+9 = 341 (using corrected sodium) (there are at least 13 formulae for this – this is the most accurate (actually 1.86*Na, I use 1.8 for simplicity) but use whichever you like) osmolar gap <10 suggests against toxic alcohols

Bicarb

severe depletion implies metabolic acidosis

AG = 125-81-7 = 37 = high AG

HAGMA

- C cyanide not suggested
- U uraemia present, likely some contribution
- T toluene expect hypokalaemia, stem not suggestive
- E ethanol not suggested

D – DKA – overwhelmingly most likely

- I iron/isoniazid not suggested
- M methanol not suggested
- P propylene glycol not suggested
- L lactate may contribute, check level
- E ethylene glycol not suggested
- S not suggested

Urea

moderately raised

pre/postrenal azotaemia – likely **hypovolaemia** and prerenal azotaemia protein load (GI bleed) – not suggested

Creatinine

moderately raised

ketone interference with assay likely (and consequent urea:creatinine higher and more suggestive of prerenal azotaemia)

renal impairment

acute - likely from stem

chronic

Glucose

severe hyperglycaemia

insulin deficiency

absolute – IDDM (known)

relative – NIDDM

consider HHS with extremely high glucose but short history/acidaemia not consistent

Osmolality

hyperosmolar

haemoconcentration

consistent with DKA and osmotic diuresis

Interpretation

Overall most in keeping with DKA

hyperkalaemia expected to resolve with insulin treatment – usually low total body potassium ECG changes of hyperkalaemia may indicate specific treatment required

DKA is a life threatening condition requiring urgent treatment

initial insulin administration and fluid therapy

controlled correction of metabolic abnormalities over 2-3 days is safest in elderly patient to avoid fluid overload

cerebral oedema

underlying precipitant should be actively sought