Physiology week 2 – Excitable Tissues VIVAs

ACEM PRIMARY 20010.1 Phy	stology VIVA Thursday 25 March pm Candidate Number:	T
3a). What is the basis of the resting membrane potential?	a). Potassium – more open Potassium channels at rest therefore intracellular/extracellular Potassium concentrations are prime determinants of resting membrane potential b).Sodium c). Separated by the cellular membrane 1.Na actively transported out of cells 2.Kt actively fransported into cells 3.Activity of Na-K ATPase pump	Na, K, ATPase and correct directions.
3b). Describe the ionic fluxes during the action potential	Voltage gated Na channels open (short lived), Na channels overwhelm K once threshold reached. Memb potential approaches Na (+60mV). Na stops as short open phase, then they close/become inactivated, then resting state again. Also electrical gradient reversed. Then opening of volt gated K channels-slower and more prolonged than Na. Slow return to closed state causes after hyperpolarization	Na and K and sequence.

Question 4:				
augstuur 4.	What are the sequen contraction and relat muscle? Prompt: what about	xation of a skeletal	 1)Motor neurone d/c + Ach presyn release 2)AcH to post syn- Nicotinic receptors ↑ Na/K in end plate generates AP along muscle fibre 3) T tubules spread depolarisation releases Ca++ from sarcoplasmic reticulum (terminal cisterns) 4) ↑ Ca around myosin/actin filaments, to TropC uncovers myosin binding sites on Actin 5) 5) X-links form thin/ thick – shorten as slide 	Pass /FailShould have 3 /5 step mentioned with some detail and know active Ca ++ reverses for relation
		[IVEA IFE1119 1110	Relaxation Ca pumped out, trop C reactivated and blocks actin/myosin bind.	
skeletal musc	contraction of le after	3 ACh binds nice	h at motor endplate ** otinic ACh receptors	Release Ach Ca release and Trop C
discharge of t neurone.	he motor	4 Increase in Na membrane 5 end plate pote 6 Muscle action		bind actin myosin link and slide
		7 Depolarization 8 Ca release at 9 Ca binds Trop on actin **	along T tubules	
How does teta occur?	anic contraction	Repeated stimul summation of Fast repeated st	hanism has no refractory period .** ation before relaxation has occurred - contractions imulation causes a fused continuous on. Can be complete or incomplete.	Describe tetanic contraction.
How does this Treppe ? (Differentiatio		tetanizing cause	al stimuli at a frequency just below s increasing tension between each acreased calcium availability.	
differences in types of slow skeletal muscle? Mode capa		capacity	red, pumping,diameter and glycolytic TPase rate. High oxidative capacity.	Know two types and three differences
			vhite. ping,diameter and glycolytic capacity Pase rate. Low oxidative capacity	

L	l	macuta densa and juxtagromerutar cens.
Neuromuscular	Describe the sequence of events in	Motor neurone action potential; end-plate potential;
excitation contraction	transmission of a motor nerve impulse to a	Acetylcholine release; Ach binding to nicotinic
coupling	muscle	receptors; muscle end-plate potential.
couping		·····;·····;·····;·····;·····;·····
	How does the muscle them become	T tubules and release of Ca2+ from sarcoplasmic
	depolarised?	reticulum.

TOPIC: Skeletal muscle excitation /contraction / relaxation NUMBER:

FIRST QUESTION	Describe the sequence of events in contraction and relaxation of skeletal muscle.	
POINTS REQUIRED	 Steps in contraction Discharge of motor neuron. Release of transmitter (acetylcholine) at motor end-plate. Binding of acetylcholine to nicotinic acetylcholine receptors. Increased Na+ and K+ conductance in end-plate membrane. Generation of end-plate potential. Generation of action potential in muscle fibers. Inward spread of depolarization along T tubules. Release of Ca2+ from terminal cisterns of sarcoplasmic reticulum and diffusion to thick and thin filaments. Binding of Ca2+ to troponin C, uncovering myosin-binding sites on actin. Formation of cross-linkages between actin and myosin and sliding of thin on thick filaments, producing movement. 	Bolded at least?
	Steps in relaxation (1) Ca2+ pumped back into sarcoplasmic reticulum. (2) Release of Ca2+ from troponin. (3) Cessation of interaction between actin and myosin.	Bolded at least
PROMPTS		

SECOND QUESTION	What is summation of contractions?	COMMENTS
POINTS REQUIRED	 The electrical response of a muscle fibre to repeated stimulation. 	
	 Contractile mechanism does not have a refractory period, so repeated stimulation before relaxation has occurred produces additional activation and a response added to the contraction already present. 	
	3. With rapidly repeated stimulation, individual responses fuse into one continuous contraction (tetanus; tetanic contraction).	
	4. Complete tetanus: no relaxation between stimuli; tension developed \sim 4 times that of an individual twitch contraction	
	5. Incomplete tetanus: periods of incomplete relaxation between summated stimuli	
PROMPTS	Describe the response of a muscle fibre to repeated stimulation. What is a tetanic contraction?	

TOPIC: Smooth muscle contraction _____ NUMBER: _____

OPENING	Describe the sequence of events in	PROMPTS	COMMENTS
QUESTION	contraction and relaxation of visceral smooth muscle.		
POINTS REQUIRED	1 Binding of ACh to muscarinic receptors 11		
	2 Increased influx of Ca ²⁺ into the cell		Essential
	3 Activation of calmodulin-dependent myosin light chain kinase		Essential
	4 Phosphorylation of myosin		
	5 Increased myosin ATPase activity and binding of myosin to actin		
	6 Contraction		
	7 Dephosphorylation of myosin light chain phosphatase		
	8 Relaxation or sustained contraction due to latch bridge and other mechanisms		
SECOND QUESTION	What factors influence intestinal smooth muscle contraction?		
POINTS REQUIRED	1 Stretch of visceral smooth muscle causes contraction in the absence of innervation		Essential
	2 Cold increases activity		
	3 ACh decreases smooth muscle potential and increases spike frequency so resulting in more active muscle		
	4 Adrenaline and noradrenaline increase smooth muscle potential and decrease spike frequency causing decreased muscle activity		
	5 Neural		

TOPIC: Conduction along a nerve cell

OPENING QUESTION	Draw & label the action potential in a nerve	PROMPTS	COMMENTS
POINTS REQUIRED	1. Resting membrane potential	1	
	2. Movement of sodium potassium ions.	2	
	3.	3	
SECOND QUESTION (if needed)	Discuss the factors that affect conduction.		2/4
POINTS REQUIRED	1. Myelinated vs demyelinated	1	
	2. Saltatory vs non-saltatory	2	
	3. Size	3	
	4. Direction of the conduction	4	

2.3 Action potential in cardiac cells	Describe the action potential in cardiac muscle fibre Why does tetany not occur in	Diagram90 mv. Voltage gated Na channels >> rapid depolarisation (phase 0); closure of channels >> initial rapid repolarisation (phase 1); alower but prolonged opening of Ca channels >> plateau (phase 2); closure of Ca channels and opening of K channels >> final repolarisation (phase 3) to resting potential (phase 4). Muscle still contracting in relative refractory period and beyond the duration of AP so cannot develop tetany.		
	amot develop telany.			
ļ		[Key items marked with*]		
potential Prompt: What are	l label an action of a neuron. the phases of a ion potential?	level is reached at –55mV. 2 Spike potential with overshoot to +35 mV.	Shape From negative to positive	
during th Prompt:	s are involved in	(+ 60 mV).	Na influx (depol) K efflux (repol)	
	e ion channels d in myelinated	1 Voltage-gated Na channels concentrated in node of Ranvier and initial segment. 2 Na channels flanked by K channels	Nodes of Ranvier	
	ential in ventricular	 RMP -90 mV (+/- 20) No prepotential Phase 0 rapid upstroke to +20 mV (+/- 20) Phase 1 short-lived ≥ rapid depolarisation to around 0 mV. Phase 2 prolonged plateau. Phase 3 moderately fast repolarisation to RMP. Phase 4 is the RMP. 	Shape including plateau General voltages (negative to positive)	
	is action potential?	 Phase 0 - opening of voltage-gated Na⁺ channels allo Na⁺ influx. Phase 1 - due to closure of Na⁺ channels and transien K⁺ efflux. Phase 2 - due to slower but prolonged opening of voltage-gated Ca²⁺ channels with Ca²⁺ influx. Phase 3 - due to closure of Ca²⁺ channels and openin various types of K⁺ channels allowing K⁺ efflux Phase 4 - RMP is due to membrane permeability at references. 	nt Ca influx (plateau K efflux (repol)	

OPENING QUESTION	Draw the action potential in a cardiac pacemaker cell, and explain the ionic fluxes.	COMMENTS
POINTS REQUIRED	1 Prepotential initially due to decrease in efflux $K^{\!+}$, then completed by influx Ca^{2^+} through T channels	Suggested Pass/Fail Criteria in Bolded Type
	2 AP due to influx Ca ²⁺ via L channels	
	3 Repolarisation due to efflux K, no plateau	All essential
PROMPTS	What electrolytes are responsible for each phase of the AP?	Stress cardiac pacemaker cell
SECOND QUESTION	How do sympathetic and parasympathetic stimulation change the prepotential?	
POINTS REQUIRED	1 Noradrenaline binds to Beta 1 receptor and raises cAMP, resulting in increased opening of L channels and Ca^{2^+} influx. Thus increased slope of prepotential and firing rate	
	2 ACh binds to M2 receptor and decreases cAMP, resulting in both slowing of Ca channel opening and opening of special K channels (counters decay of K efflux) leading to greater fall in prepotential Thus decreased slope of prepotential and firing rate	
PROMPTS	What does noradrenaline do? What does vagal stimulation do?	

TOPIC: AP in Cardiac pacemaker cell + effect SNS/PNS_NUMBER:

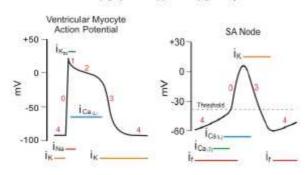
TOPIC: Pacemaker potential ______ NUMBER: _____

OPENING QUESTION	Describe the features of the action potential in cardiac pacemaker tissue.	PROMPTS	COMMENTS
POINTS REQUIRED	1 Prepotential initially due to decrease in inward K^+ movement then inward $\rm Ca^{2+}$ through T channels	Compare it to vent muscle	All essential
	$2~$ Action potential due to inward $\rm Ca^{2+}$ through L channels		
	3 Repolarization due to inward $\rm K^+$ movement		
	4 No plateau		
SECOND QUESTION	How do autonomic factors alter the slope of the prepotential?	What does noradrenaline do?	
POINTS REQUIRED	1 Noradrenaline from sympathetic endings raises intracellular cAMP		
	2 Facilitates opening of L channels		
	3 Increased Ca ²⁺ influx		
	4 Increased heart rate		
	5 ACh acts via muscarinic receptors and G protein to open K ⁺ channels and decrease rate		

COMMENTS

TOPIC	QUESTION	ESSENTIAL KNOWLEDGE	NOTES
Question 1a:	Draw and explain the action potential in a cardiac pacemaker cell.		Pass-fail Must have shape to pass and know ion fluxes (↓effK + infCa T)- InfCa L – Eff K)
		0 (µ) 10 (µ) 10 (µ)	1 Pre-potential initially due to decrease in efflux K ⁺ , then completed by influx Ca ^{2*} through T channels
		-60 Protection decay	2 AP due to influx Ca2+ via L channels
		PROMPTS: What electrolytes are responsible for each phase of the AP?	3 Repolarisation due to efflux K, no plateau
Question 1b:	Describe the major differences between a cardiac mycoyte AP and		 Resting membrane potential, , -90mV rapid depolarisation voltage gated Na (overshoots) Phase 1 rapid repolarisation = closure of Na channels.(inner v outer gates) Plateau phase 2 voltage gated Ca2+ channels open (slower
	the pacemaker	È o ja	L type)
	10-07		4. Phase 3 repolarisation Ca2+ ch close
			5. Phase 4 due to various K+ efflux
			Differences-
		42	1) Na fast v Ca dependent,
			automaticity due to rising prepotential (K+/ Ca+),
			3) plateau phase,
		Time (mi)	4) > resting potentials
		Roze, Europ VF Jones Andread Analon, 2016 Million Mary Conne and Strandon Anno. Capacipia & The Hiddow MI Consultant, Stu 31 April Internal.	Pass-Fail: Need correct shape + some knowledge of different channels (partic Na v Ca), no automaticity (no- prepotential, as no leaking K/ Ca) and plateau due to Ca ++ >er inactive phase)
1			

NUMBER:


OPENING QUESTION Describe the features of the action potential **PROMPTS** COMMENTS in cardiac pacemaker tissue. POINTS REQUIRED Prepotential initially due to decrease in K^{*} efflux, then increase in inward Ca^{**} through T channels. All essential Compare it to vent muscle Action potential due to inward Ca²⁺ through L channels. Na+ is fairly unimportant, unlike ventric myocytes. Can you draw it? [see graph below] 3 Repolarization due to inward K* movement 4 No plateau SECOND QUESTION How do autonomic factors alter the slope of the prepotential? What does noradrenaline do? POINTS REQUIRED 1 Noradrenaline from sympathetic endings raises intracellular cAMP 2 Facilitates opening of L channels 3 Increased Ca²⁺ influx 4 Increased heart rate $5~{\rm ACh}$ acts via muscarinic receptors and G protein to open ${\rm K}^*$ channels and decrease rate I I

TOPIC: Pacemaker potential

DETAILS Describe the features of the action potential in cardiac pacemaker tissue... esp how it differs to ventricular muscle AP NB draw two graphs:

Ventricular muscle AP: flg 3-16, p80

Pacemaker AP: my graph back of p9.2-1 = fig 28-2, p549

Remember the stages of ventricular AP:

- 0 depolarisation 1 initial rapid repolarisation
- 2 plateau
- 3 late rapid repolarisation
- 4 baseline

Overview:

- SAN has greatest capacity for self-excitation [duh!]
- The key is that the cell membrane is inherently leaky to Na+, & the fast Na channels don't work, unlike the ventricular muscle cells. Who cares? Well...
 - o The constant Na inflow is always tending to depolarize the cell
 - that's why phase 4 is up-sloping The phases of the AP are due to slow Na+ and Ca++ channels only [& K+ too of course], rather than fast Na+ channels [which don't work at -55mV]
 - o This smooths out the curve because overall Na+ has little effect on the AP

With that in mind, the key features are:

- resting potential is -55 to -60 mV [cf -90] [note the different y-axes]
- · ironically, phase 0 [depolarization] is slower, because fast Na channels don't work [blocked bc the cell membrane is partly repolarised at -55]
- phases 1 & 2 don't happen

- repolarisation [phase 3 here] is not due to Na channels closuring but voltagegated K channels opening & K+ floods out.
- · When these K channels close, depolarization starts again.
- Phase 4 is up-sloping as noted.

The gory details:

- 1. there are 2 types of Ca++ channel:
 - a. When T-channels [transient] open, they cause phase 4 to be an upsloping 'prepotential'
- b. When L-channels [long-lasting] open, true depolarization begins.
 2. Depolarisation [Phase 0] due to inward Ca³⁺ through L channels, and the
- ongoing inward Na+ drift
- 3. Repolarization due to inward K* movement
 - a. Phase 1 [initial rapid repolarisation] doesn't happen [bc no fast Na+ channels to close] b. Phase 2 [plateau phase due to Ca++ channels] practically doesn't occur c. Phase 3 [late rapid repolarisation] still occurs.
- 4. Phase 4 [baseline] is upward sloping because it's so excitable that it starts gradually depolarizing again almost immediately. As noted above, best to call phase 4 the prepotential. Its upward slope is doe to 2 things:
 - a. The repolarising K-channels close, so decrease in outward K* movement
 - b. then inward Ca³⁺ flow through T channels

How do autonomic factors alter the slope of the prepotential? [fig 28-3, p549] Noradrenaline from sympathetic endings raises the slope

- o raises intracellular cAMP
- $\circ~$ this facilitates opening of L channels, and Ca++ enters more rapidly
- end result: ↑HR.
- ACh decreases the slope
 - o acts via muscarinic receptors and G protein
 - o this opens K* channels & more K floods out, prolonging the baseline
 - o ↓HR

Nerve action potential		Resting membrane potential (-70mV); firing potential (-55mV); depolarises to positive level (+35mV) (Concept, not exact figures)	
·	What are the ion fluxes that occur during an action potential?	Fast sodium influx; slow potassium efflux	