Physiology week 18-20 - Endocrine VIVAs

What factors control blood glucose levels?

- 1. Absorption: dietary intake, renal tubule reabsorption
- 2. rate of entry into cells (including factors which affect this such as insulin, glucagon)
- 3. glucostatic activity of the liver (storage of glycogen, breakdown of glycogen, gluconeogenesis)

What are the potential pathways for glucose metabolism in the body?

- 1. aerobic
- 2. anaerobic
- 3. glycogen
- 4. pentoses

TOPIC: Aldosterone secretion	NUMBER:	3c
------------------------------	---------	----

OPENING QUESTION	What are the main regulatory factors for aldosterone secretion?		
POINTS REQUIRED	1 Renin-angiotensin system	1	Must have to pass
	2 ACTH	2	Must have to pass
	3 Rise in plasma K concentration (via the adrenal cortex)	3	Must have to pass
SECOND QUESTION	Describe the actions of aldosterone		

Question 5:a	Describe the typical serum / urine effects in hyperaldosteronism	Na/ CI mild ↑, fluid retention (follows Na), ↓K, alkalosis (alkalaemia only if K+ depletes) Urine K+/ H↑	Na +/ CI- mild rise in serum + fluid retention K+ <, mild alkalosis/ alkalaemia Why: Na + retained/ but drags fluid into ECFV01 (dilutes) + Na+ excretion >- escape phenomena C1 -retention with Na+. K+ depletion - K+ diuresis* (due to effect of aldosterone) H+ lost in urine - ↑ urinary acidity*, H+ loss in serum- only seen if K+ depletes and rely on H+ excretion
5b	How does aldosterone exert its effects in the kidney?	Mineralocorticoid- Via Principal cells- collecting ducts, 2 effects 1) Genomic- Intracellular to nuc signalling > mRNA – a) Inc ENAC insertion/ activity (quick) b) > production (slow) 2) membrane bind IP3 mediated Na/K exchange > All = > Na reabsorb K/H loss to urine	Is a medullary mineralo corticoid. Acts on P(rinciple cells ?) cells in collecting duct* (↑ reabsorption of Na+ and ct from urine in exchange for K+ and H+ causing ↑ pH and K+ diuresis. Action takes 10-30 minutes to develop and peaks later* Aldosterone – cytoplasmic receptor complex moves to nucleus where it alters transcription of mRNA. This now has 2 effects: 1 Rapid - ↑ activity (+insertion*) of preformed/ active EpithNaChannels s, via activation of genes for SGK 2 slower* - ↑ synthesis of ENaCs. There is a non genomic action. ↑ activity of the Na+ K+ exchangers via IP3 - ↑ intracellular Na+

OPENING QUESTION	Describe the actions of Aldosterone.	COMMENTS
POINTS REQUIRED	increase reabsorption of Na ⁺ from urine Acts on principal cells (P cells) of collecting ducts, leading	Aldosterone cause retention of Na ⁺ in ECF leading to ECF volume
	to increased amounts of Na ⁺ exchanged for K ⁺ and H ⁺ in renal tubules, producing a K ⁺ diuresis and fall in urine pH.	expansion
	 increase reabsorption of Na⁺ from sweat, saliva and 	
PROMPTS	colon	
TROMI 15		
SECOND QUESTION (if needed)	List the stimuli that increase aldosterone secretion	
POINTS REQUIRED	1. ACTH from pituitary	1, 2 and two others at least
	2. renin from kidney via angiotensin II	
	 direct stimulatory effect of rise in plasma K⁺ concentration on adrenal cortex 	
	4. Clinical causes:	
	Surgery Anxiety Physical trauma	
	Haemonhage High K intake Low Na intake	
	Standing Constriction of IVC in thorax	
	2º hyperaldosteronism (eg CCF, cirrhosis, nephrosis)	
PROMPTS		
THIRD QUESTION (if needed)	Describe the feedback regulation of aldosterone secretion.	via renin-angiotensin system feedback loop.
POINTS REQUIRED	 Fall in ECF / blood volume → reflex increase in renal nerve discharge & decrease in renal artery pressure 	Bolded
	 → increase in renin secretion → increase in angiotensin II → increase in aldosterone secretion 	
	 → Na⁺ & water retention → expanded ECF volume → decrease in stimulus that initiated renin secretion 	
PROMPTS		

<u>Insulin</u>

TOPIC: Insulin secretion NUMBER:

OPENING QUESTION	What happens to the insulin secretion when a person is injected with 50ml of 50% Dx?	PROMPTS	COMMENTS
POINTS REQUIRED	1. It would go up	1	
SECOND QUESTION (if needed)	Describe the mechanism of insulin secretion.		
POINTS REQUIRED	The insulin is dumped from the beta cells of the Islets of Langerhaus within 3-5 minutes followed by a plateau at 2-3 hrs by activation of the enzyme system	1	
	 Glucose is metabolised by the glucokinase and this involve ATP, decrease potassium efflux and increase calcium entry into cells that cause release of insulin by exocytosis. 	2	

	Endocrine	Physiologically what are the acute	Intracellular glucose deficiency; extracellular
	regulation of	consequences of insulin deficiency?	excess; protein and fat catabolism
	glucose homeostasis		
		Describe the biosynthesis of insulin	B cells as a precursor hormone; insulin released
1			from the cell with C peptide.
		Describe the structure of the insulin	
		receptor	2 alpha and 2 beta glycoprotein subunits.

TOPIC Insulin mechanism NUMBER: 4

OPENING QUESTION	What are the main effects of insulin?	PROMPTS	COMMENTS	
POINTS REQUIRED	Increased glucose into cells (adipose, liver, muscle) Protein synthesis Glyogenolysis K into cells		Need to know ¾ to pass	
SECOND QUESTION (if needed)	What is the mechanism of action of insulin?			
POINTS REQUIRED	POINTS Insulin binds to insulin receptors on insulin		Must describe that insulin binds to receptor and is taken into cell where secondary mediators are formed	

COMMENTE

TOPIC: Physiology of Insulin

NUMBER:

OPENING QUESTION	What happens when insulin binds to an insulin receptor?	COMMENTS
POINTS REQUIRED		
	 Insulin binding riggers tyrosine kinase activity of β subunits → autophosphorylation of β subunits on tyrosine residues 	2 of points 2 - 5
	3. o phosphorylation and de-phosphorylation of proteins	
	 → Effectors and secondary mediators – Insulin seceptor substrate (IRS-1),phosphoinositol 3-kinase (PI3K) 	
	 Once bound, insulin receptors aggregate in patches and are endocytosed → enter lysosomes → broken down or recycled; 	
PROMPTS	What is the structure of an insulin receptor?	
SECOND QUESTION	What are the principal actions of insulin?	
POINTS REQUIRED	Net effect: storage of CHO, protein and fat	
	Rapid (seconds): ↑ transport of glucose, amino acids and K into insulin-sensitive cells	All 3
	Intermediate (minutes): stimulation of protein synthesis and inhibition of protein degradation; activation of glycolytic enzymes and glycogen synthase; inhibition of phosphorylase and gluconeogenic enzymes	
	3. Delayed (hours): ↑ mRNAs for lipogenic/other enzymes	
PROMPTS	What happens seconds, minutes and hours after insulin binds?	

3.4 Insulin & Glucose Genong pp 336-340	Describe the effects of insulin on various tissues	 Adipose: glucose in, fatty acid + glycerol synthesis, TG deposition, K in Muscle: glucose in, glycogen synthesis, Aas in, protein synthesis, ketones in, K in Liver: glycogen, protein + lipid synthesis, General: cell growth
	What is the time frame for these effects	 Rapid: glucose, AAs, K into sensitive cells Intermediate: protein synthesis, glycolysis and synthesis, inhibition gluconeogenesis Delayed: lipogenesis

2 a). What are the principal actions of insulin?	Storage of carbohydrate, prot and fat, varies with tissues Rapid-seconds. Glc, amino acids and K+ into insulin sens cells Intermediate- minutes. Stimulates prot synthesis, inhibits prot degradation, activates glycolytic enzymes & glycogen synthase, inhibits phosphorylase and gluconeogenic enzymes. Delayed- Hrs. increase in mRNA for lipogenic & other enzymes	Gle and K from rapid. 2 others Answer must reflect understanding of effects on carbohydrate, protein and fat
2 b) What happens when insulin binds to its receptor?	 Binds to a cell membrane-based stereospecific insulin receptor on insulin-sensitive cells Insulin binding triggers tyrosine kinase activity of β subunits → autophosphorylation of β subunits on tyrosine residues The above reaction → phosphorylation and de-phosphorylation of proteins that are effectors and secondary mediators. 	Binding results in activation of secondary protein effectors (tyrosine kinase activity) and mediators (phosphorylation)

What are the major factors	Concept: Balance between glucose entering the bloodstream and glucose leaving	3 for a pass + concept
	the bloodstream.	
PROMPTS	Dietary intake Cellular uptake (partic muscle/fet/ hepatic)	Complex hormonal effects not required
If discussing hormones XS-	Hepatic glucostat / glycogenisis,	
how does glucose enter and leave the plasma	Renal freely filtered but PT reabsorbed to Tmax	Chart Greater Greater Communication Communic
	6) Hormonal effects on these (partic 1, 3.4)	NO manual,
		Marries Feet Marries and assert Asserts
	determining the plasma glucose level? PROMPTS If discussing hormones XS- how does glucose enter and	what are the major factors determining the plasma glucose level? 2. Dietary intake 3. Cellular uptake (partic muscle/fat/ hepatic) 4. Hepatic glucosearies, glycogenolysis, gluconeogenisis, glycogenolysis, gluconeogenisis 5. Renal freely filtered but PT reabsorbed

4b:	List the hormones which effect plasma glucose levels?	↓BSL - Insulin (),Ins like GF 1and 2- (NSILA) ↑ BSL Catecholamines (Nor / Epi partic)	Insulin via glucose uptake (al tissues), glycogenogenesis, Liver - gluc to fat, - IGF- similar but much <
	Prompt- which way does gluc move	(>), Glucagon (>), GH>, Cortisol>, Thyroid Pass requires 3 hormones + correct < or >	Catechol –b receptor > cAMP- glycogenolysis/ gluconecgenesis Glucagon- cAMP direct- as catech TFTs-> absorption + †glycogenolysiss (liver partic) + ins bkdown† Cortisol- permissive to Glucagon/Catechols + some glucgenesis, prot to gluc liver- < uptake GH- > gluc liver, insulin block, <tissue th="" upotake<=""></tissue>

Overview: Ultimate fate of ingested glucese:

- 5% converted to glycogen in the liver
- 30-40% converted into flat
- \$5-65% metabolized into energy
- First, glucose phosphorylated to glucose-6-PO4 [O6P] inside cells (hexakinase, glucokinase)- this is the essential 1° step which makes it 'unable'
- 2. Then, G6P can go one of two ways:
 - polymerized to give open §5% ends up this may!. NO I think needs to be reconverted to glucose-1-204
 - b. catabolised to powerer [via the Embden Meyerhof pathway or house monophosphate shunt]
- 3. Pyruvate then can go one of two ways:
 - Aerobic conditions: converted to acetyl CoA, which is the essential fael for the citric soid [Krebs] cycle. This generates net 38 ATP per glucose. [Some say 30.]
 - denserable conditions: converted to lactate which is converted back when oxygen becomes available. This generates only 2 ATP.

	Insulin has a hypoglycaemic action but it has many other effects on amino acid and electrolyte transport, enzymes and growth. The net effect is storage of carbohydrate, protein and fat.	
THIRD QUESTION	Repid (seconds) Increased trainport of glucose, amino acids and potassium into insulin sensitive cells. Learnediare (minutes) Stimulation of protein synthesis lubibation of protein degradation Activation of glycolytic enzymes and glycolytic synthese lubibation of phosphocylars and glucomorgenic enzymes. Delayed (nears) Increase in mRNAs for lipogenic and other enzymes. How is insulin secretion regulated?	
POINTS REQUIRED	Overview: 1. insulin is secreted by Beta cells, which form the majority of islet cells in the Islets of Langerham (endoarine pancross) 30% is degraded in liver and kidney.	
	Semalaters Glucose, matmose, fructose Glarmire esters B cells vis GLUT 2 transporters. Glucose is them metabolized by glacokinase generating AIP that choics AIP sensitive potassium chaenels. Depolarisation results in opening of voltage sensitive esteium chaenels and intracellular calcium ringers insulin release. Intratinal hormones Gastrin Secretin CCK, Glucagen GIP Protein and fat derivatives Amino acida (leucine, arginine) Bets keto acida Autonomic nervous system Acetylcholine via Mercoeptors and right vogus nerve Causes activation of phospholipase C, release of IPs and subsequent calcium release from endoplasmic reticulum. Bets adrenergic agonists alpha agonisti cause inhibition and this tends to be the dominant effect unless there an alpha antagenist is present. Increased cAMP due to: Glucagen Theorphylline	

OPENING QUESTION	Describe the effects of insulin	PROMP	COMMENTS
	General: Increased cell growth		
POINTS REQUIRED	Liver Decreased glucose output due to decreased gluconengenesis and increased glycogen synthesis. Increased protein synthesis Decreased knogenesis		
	Fat Increased glucose entry Increased fatty acid synthesis Increased triglyceride deposition Activation of lipoprotein lipase Increased poissours upake		
	Muscle		Ď.
	Increased glucose entry Imreased amino acid uptake Increased amino acid uptake Increased protein synthesis Decreased protein catabolism Decreased release of gluconcogenic umino acidi Increased ketone uptake Increased potassium uptake		
	Heart: positive inotropy, chronotropy		3
SECOND QUESTION	How does insulin cause these effects?	What is its cellular mechanis m of action?	
POINTS REQUIRED	Insulin binds with an insulin transmembrace receptor that binds and stimulates a protein tyresine kinase. Exposure to increased insulin down regulates receptor consentration and affinity.		

	Inhibitore	
	Somatestatin	
	 Glucose metabolism preventors 2-decoyglucose Mannoheptulose 	
	 Autonomic nervous system Alpha adrenengic agonista Beta antagonista 	
	 Online in Polypoptide found in some of the sutonomic news innervating the islets Causes opening of potassium channels 	
	 Hypokaluemin and potassium depleters Thinzide directics Phenytoin Alloxan Microtubule inhibitors Insulin 	
OURTH UESTION	DESCRIBE THE PRODUCTION & METABOLISM OF INSULIN	
OINTS RQUIRED	Production Polypeptide containing 2 chains (A and B) of amino acids linked by disulfide bridges. Synthesized as part of propositionalin. Removal of a populae leader sequence forms proinsulin. Connecting populae is removed in the granules prior to release.	
	Metabolism Half life 5 minutes. Binds to insulin receptors and in internalized. Destroyed by insulin protesse.	

Calcium

TOPIC: Calcium metabolism_______NUMBER: _____

OPENING QUESTION	Discuss the hormonal control of calcium metabolism	PROMPTS	COMMENTS
POINTS REQUIRED	11, 25 DHC, inc uptake (gut and renal)	l What are the three hormones involved?	
	2 PTH, inc reabsorption from bone	2	
	3 Calcitonin, dec reabsorption from bone	3	
	4	4	
	5	5	
	6	6	
SECOND QUESTION (if needed)	What are the secondary hormones involved?		
POINTS REQUIRED	1 GH, inc gut reabsorption	1	
	2 Glucocorticoids, inc bone reabsorption	2	
	3 Oestrogens, inhibit osteoclasts	3	
	4	4	
	5	5	
	6	6	
	7		
THIRD QUESTION (if needed)	How does a high calcium affect the mechanism you just discussed?		
POINTS REQUIRED	1 Decreased 1,25 DHC	1	
	2 Decreased PTH	2	

Pass: Ca ++ ↑ PO4 ↓ + some idea of how these achieved OR additional other mechs What are the actions of the parathyroid hormone on Calcium? PTH-1. ↑ plasma Ca⁺⁺ by: ↑ Ca⁺⁺ mobilization ↑ bone reabsorption, Ca reabsorption Parathyroid related hormone-What are the other effects of PTH? 2. \downarrow plasma phosphate: \downarrow PO $_4$ reabsorption in proximal tubules (prob fetal/ cartilage growth + teeth/ breast- skin) ? PO4 < +1 other in either section 3. † 1,25 dihydrocholecalciferol: renal (> Ca absorption) 4. Over a longer time: † osteoblastic and osteoclastic stimulation- prob anabolic

TOPIC: Calcium metabolism NUMBER: 5

OPENING QUESTION	Name the principal hormones associate with regulation of Ca metabolism	PROMPTS	COMMENTS	1	
POINTS REQUIRED	1, 25 dihydroxy cholecalciferol Parathyroid hormone Calcitonin	N.	Need 2 to pass		
SECOND QUESTION (if needed)	Describe the action of parathyroid hormonic	u l			
POINTS REQUIRED	PTH- reabsorption of Ca from Bon increase urine Phosphate excretion. Increa formation of 1,25 dihyrdroxycholecalcifer incre Ca absorption in GIT. Increase PO4 stimulate PTH prod'n by lowering serum. Ca and inhibit form of 1,7 DIHYDRO	se od eg	Need 2/3		
THIRD QUESTION (if needed)	Describe the action of 1, dihydroxycholecalciferol & calcitonin.	15			
POINTS REQUIRED	1,25 dihydrox –increase Ca and Phospha sbsorption from intestine via calbind proteins, Also Increase Ca reabsorption Kidneya, increase synthetic activity osteoblasts, necessary for normal Ca of bor matrix.	in in of	Need 1 point to pass		
	Calcitonin- inhibits bone resorption (inhibits osteoclastic activity) → lowe serum Ca AND PO4 levels. Increases (excretion in urine. Parafiollicular cells:		8		
Question 4: Regulation of plasma calcium levels are regulated? plasma calcium levels. Ganong pp 382-95 How plasma calcium levels are regulated? Prompt; What increases or decreases plasma calcium?		Ca absorpti b) Parathyroid c) Calcitonin Glucocortice effect Ca. 9: plasma, son	coxycholecalciferol (f on from gut and kidney d hormone mobilizes (from thyroid) inhibits b bids, GH, oestrogens a 5% in bone (some reach ne bound and some fre ein levels and pH). Inc	rs. Ca from bone. cone resorption. ord others also dity available). In se (depends on	Need to list all 3 and discuss its effect on Ca (inc or dec).
	Describe the regulation of parathyroid hormone levels. Prompt: What stimulates production o parathyroid hormone?	receptor and Dihydroxycho preproPTH m Ca and 1,25 I	dback by Ca via a mer G protein. 1,25- lecalciferol acts to dec RNA. Incr phosphate in DHCC. Mg required for	rease nor PTH by decr PTH secretion.	
		limb(s) centra effectors. • Sensory organ subcutaneous painful) stimuli	nsisting of sensory orgal integrator(s) efferences are nociceptors in that issues, responding to the series sensory (pain) fib	nt limbs se skin or noxíous (usually	
3.5 What factors influence the level of free calcium in plasma?		angeable (resorption / deposition)			
	occur? • Attach • Hydrog • Acid di	to bone via integrins in s		orane.	of RANKL.

1.5 Vitamin D Gemong pp 387-388	What are the actions of vitamin D?	Increased absorption of calcium from the intestine by induction of calbindin-D proteins. Increased resorption of calcium in the kidneys. Increased osteoblast activity. Aids calcification of bone matrix.
	How is the synthesis of vitamin D regulated?	(3 of 5) Not closely regulated. Low calcium leads to increased PTH secretion and increased vitamin D is produced. High calcium inhibits PTH and the kidneys produce inactive metabolites. Low phosphate increases vitamin D production (and high phosphate inhibits it). Vitamin D inhibits the enzyme involved in its synthesis.

Adrenal

TOPIC: Adrenomedullary hormones ______ NUMBER: _____

OPENING QUESTION	How do the effects of noradrenaline and adrenaline differ on the cardiovascular system?	PROMPTS	COMMENTS
POINTS REQUIRED	1 BP: norad; ad	1	
	2 HR: norad; ad	2	
	3 CO: norad; ad	3	
	4 TPR: norad; ad	4	
	5	5	
	6	6	
	7	7	
	8		
SECOND QUESTION (if needed)	How do the effects of adrenaline differ with serum concentration?		
POINTS REQUIRED	lLow concentrations — some beta effects, high concentrations alpha predominates	1	
TITTE			

_1	THE PARTY NAMED IN		
3	.5 Physiology	What are the effects of	Action on intermediary metabolism of carbo, proteins, fats. Permissive action for glucagon, catecholamines -
0	f	glucocorticoids.	calorigenic, lipolytic, pressor, bronchodilator, vascular reactivity. CNS vs irritability, apprehension, inability to
g	lucocorticoids		concentrate. Renal – excretion of water by increased GFR. Anti-inflammatory vs cytokines. Resistance to 'stress' – noxious stimuli increasing ACTH.
		How are they metabolised? How are they controlled?	Cortisol liver, conjugated to glucuronic acid; inactivation depressed by liver disease

TOPIC: Adrenal medullary hormones NUMBER: 4

OPENING QUESTION	What hormones are secreted by the adrenal medulia?	PROMPTS	co
POINTS REQUIRED	Adrenalia, noradrenalia and dopamine. Must have all 3		
SECOND QUESTION (if needed)	What are the major effects of these hormones?		
POINTS REQUIRED	α and β effects increase HR and force contraction, vasoconstriction, hypertension, alertness, metabolic rate, glycogenolysis		
	Must describe at least 5 effects		

2.4 Gluccorticoids Gemong pp 372-380	What are the physiological effects of glucocorticoids?	Metabolic; increased protein catabolism, increased hepatic glycogenesis and gluconeogenesis (raised plasma glucose). Raise peripheral tissue insulin resistance Permissive effects on other reactions Are required for catecholamines to produce calorigenic and lipolytic effects, pressor responses (vascular reactivity) and vasodilatation Inhibit ACTH scretion (feedback) Impair water excretion (mechanism unclear) Reduce circulating basophils and eosinophils and increase other elements Required for stress response Affect EEG waveforms (mild personality changes in insufficiency)
	How is glucocorticoid secretion regulated?	Basal secretion and stress response both dependent on ACTH (Other substances may stimulate adrenal directly but no evidence of role in physiologic regulation) Free glucocorticoids produce negative feedback on ACTH secretion at both hypothalamic and pituitary levels. Effect mediated by action on DNA Stress response ACTH secretion mediated almost exclusively via hypothalamic release of corticotrophin releasing hormone Circadian rhythm. ACTH released in irregular bursts throughout day but much more common in early morning.

4. What are the physiologic	Intermediary metabolism of carbohydrate, protein, fat*
effects of the glucocorticoids?	2. Inhibit ACTH secretion*
	 Maintain reactivity of vascular (and bronchial) smooth muscle to catecholamines*
	4. Allow excretion of a water load (mechanism unclear)
	 Blood - ↑ RCC, ↑ WCC (mainly PMNs), but ↓ Lymphocites and Lymph node size CNS - irritability, apprehension, inability to concentrate (eg in exams)
	7. "stress response"
	(Up to 3 specific prompts, eg "what are the vascular effects of glucocorticoids?")

Pituitary

Pituitary hormones	What hormones are produced by the pituitary?	Knowledge of anterior and posterior pituitary with 4 of 6 of the anterior pituitary (TSH, ACTH, GH, FSH, LH, prolactin) and one of vasopressin or oxytocin.
	What are the physiologic effects of vasopressin?	Renal retention of water in excess of solute reducing body fluid osmolality or concept.

Thyroid

Thyroid hormones	What are the effects of thyroid hormones? How are thyroid hormones synthesised?	At least two organ systems and one effect on each Active iodide transport; binding to thyroglobulin; MIT		
	What is the mechanism of action of thyroid hormones?	and DIT join to form T3 and T4. Enter cells; binds to specific receptors; hormone– receptor complex binds DNA & effects gene expression.		
Question 4: Thyroid hormone synthesis and effects. Ganong pp 319, 323-6	i) Describe the steps in synthesis of thyroid hormones. Prompt: What are thyroid hormones made from? Thyroid periosdete Horoid Hormones made from?	Thyroid epithelial cells secrete thyroglobulin (comprising 134 tyrosines) and iodine into colloid. Iodide transport is via a symport with sodium (NIS). Thyroid peroxidise makes iodotyrosines (MIT and DIT) then combines them to make T3 and T4. Some reverse T3 (inactive) also made. Endocytosis and lysis of colloid releases free hormone. All steps TSH controlled. T3 also made peripherally by deiodination of T4.		
	What are the physiological effects of T4? Prompt: How do thyrold hormones alter metabolism?	Binds to intracellular thyroid receptors in the nuclei. Complex binds to DNA and alters gene expression. T3 more rapid and potent. Incr metabolism and catabolism of most cells (brain and others excluded). Lipid and carb mobilisation and usage. Inc CVS and CNS activity. Normal reproductive cycle and growth. Effects incr by catecholamines.		

TOPIC: Effects of the	vroid hormones	NUMBER:	

OPENING QUESTION	What are the effects of thyroid hormones on different body tissues?	PROMPTS	COMMENTS
POINTS REQUIRED	Heart: chronotropic, inotropic (increased beta receptors, enhanced response to catecholamines)		Need 2 of first 4 to pass plus 2 others.
	2 Adipose tissue: catabolic (lipolysis)		
	3 Musculoskeletal: catabolic (increased protein breakdown), developmental (promote growth and development)		
	4 Most (except adult brain, uterus, testes, spleen): calorigenic (increased O2 consumption of metabolically active tissues)		
	5 CNS: developmental (promotes brain development)		
	6 GIT: metabolic (increased carbohydrate absorption)		
	7 Lipoprotein: metabolic (increased LDL receptors)		

1.4	What are the effects of thyroid	(4 out of 7)
Thyroid hormouses Gemong pp 319-328	hormones?	Widespread actions Metabolically active tissues Heart - increased rate Brain - development reticular Act. Sys. Gut - increased carbohydrate absorbtion. Muskuloskeletal growth Adipose – lipolysis
	What is the mechanism of action?	(4 out of 8) Intracellular • At the nuclear level • O2 consumption regulator. • T3 binds better than T4 to receptor • Hormone/receptor binds to DNA • Affects gene expression • Two genesites • Alpha Chromosome 17 • Beta Chromosome 3

Impt issues highlighted 3/6 for a pass. What are the effects of thyroid hormones on nervous and vascular systems CNS-1)Development CNS -cerebral cortex, basa ganglia cochlea 2)↑ activity, mentation speed/ agitation (catechol / dop+direct brain effects) 3)↑ refexes Pass: 3-4 overall at least 1 in each Prompt- what features of thyrotoxicosis CVS-1)vasodil (2ary heat)2) > circ vol/ HR/ CO
- 3)Ht-> myosin heavy chain (+ isoforms)/ faster twitch genes (+ Ca ++, Na K ATPase etc1) + down reg others, > contraction/ HR/ speed of contraction 4) > sens to Catechols (synergistic effects + up regulated ß receptors and effector systems) HR, contract more What other physiological effects does thyroid hormone have on the body? Lipolysis - adipose tissue Formation of LDL receptors on lipoprotein 2 required Protein breakdown in muscle Skeletal development promoted Increased carbohydrate absorption from the gut Stimulates O₂ consumption by metabolically active tissues Increased BSL/ insulin resistance