Physiology week 13 – Respiratory (gas transport) VIVAs TOPIC: Carbon dioxide transport ______NUMBER: _ | OPENING
QUESTION | How is carbon dioxide transported in the blood? | PROMPTS | | |-----------------------------------|--|---------|---| | POINTS
REQUIRED | CO2 is carried in the blood as dissolved,
as bicarbonate, and in combination with
proteins as carbamino compounds. | 1 | 2 | | | 2. | 2 | Г | | SECOND
QUESTION
(if needed) | Draw and label the carbon dioxide dissociation curve. | | | | POINTS
REQUIRED | 1. | 1 | | | | 2. | 2 | | ## TOPIC: Oxygen & CO2 in the blood NUMBER: 2 | OPENING
QUESTION | How is oxygen transported in the blood | ? PROMPTS | COMMENTS | | |--|--|---|---|--| | POINTS
REQUIRED | O2 dissolved
(0.0003ml/100mlblood/mmHg), | | Need to name
both. | | | | Heme protein | | | | | SECOND
QUESTION
(if needed) | Describe the oxygen dissociation curve | | | | | POINTS
REQUIRED | Name the axis Hb saturation and pO2 &
name 50% saturation (pO2= 27 mmHg)
p40 = 75% saturation. | | | | | THIRD
QUESTION
(if needed) | transported in the blood? | oxide | | | | POINTS
REQUIRED | CO2 dissolved 10%, Bicarbonate (60%) Carbamino compounds (30%) deoxygenated blood is better at carryin, CO2 = Haldane effect | g | Need to say all 3 pass. | | | Question 2: Carbon Dioxide Transport West pp 80-3 | i) How is carbon dioxide transported in the blood? | 0 20 4 | to so so so secure (mm Hg) and of different Co seturations. Note the same PCOp. The finest shows the mixed venous blood. with proteins, especially | To pass: 2/3 | | | ii) How does venous blood carry more CO2 than arterial blood? | Deoxygenated haemoglobin binds more H* and forms more carbamino compounds than oxyhemoglobin so venous blood carries more CO ₂ than arterial blood. This is known as the Haldane effect. | | Does the curve move towards the left or the right, and why?? | | TOPIC: C | arbon Dioxide Transport | NUMBER: | | |--|---|--|-----------------------| | - | How is carbon dioxide transported from the | cOMME | | | POINTS
REQUIRED | 1. In plasma: Dissolved Carbamino compounds with pla Hydration - H ⁺ buffered - HCO ₃ In red blood cells: Dissolved. Formation of carbamino-Hb. Hydration - H ⁺ buffered - 70% of plasma. Of the approximately 49 mL of CO ₂ in each arterial blood, 2.6 mL (5%) is dissolved, 2.6 r carbamino compounds, and 43.8 mL (90%) is In the tissues, 3.7 mL of CO ₂ per decilitre cadded; 0.4 mL (10%) stays in solution, 0.8 ml carbamino compounds, and 2.5 mL (70%) for | HCO ₃ enters a decilitre of al. (5%) is in in HCO ₃ - of blood is L (20%) forms ms HCO ₃ . | _ | | | The pH of the blood drops from 7.40 to 7. Which is the most important? | 36. | _ | | PROMPTS | Anywhere else ? (other than plasma) | | | | | | | _ | | (if needed) | What is meant by the term 'chloride shift'? | | _ | | POINTS
REQUIRED | About 70% of the HCO₃ formed in the the plasma in exchange for Cl. The excithe chloride shift. This process is mediated by Band 3, a maprotein and is essentially complete in 1 se Note that for each CO₂ molecule added to is an increase of one osmotically active particles of the red cell. Consequentake up water and increase in size. | hange is called
jor membrane
cond.
a red cell, there
uticle—either an | _ | | DDO) (DTC | | | - | | PROMPTS 2 a). What are the cathypoxaemia in a perbreathing room air | | t, V/Q inequality | Need 3/4 | | 2 b). Explain why
ventilation-perfusion
inequality causes a raterial Po ₂ while ar
PCo ₂ remains relative
normal | educed lectial PCO ₂ . The CO ₂ dissociation curve is linear at the | gas exchange would deteriorate with hypox
working range. The increased ventilation is
with high V/Q ratios
So high V/Q areas can only boost their PO ₂ | s able to correct the | | Question 2: | What is the effect of carbon monoxide on these curves? | Prompt if draws saturation dissociation curve No | |