Physiology week 10- Cardiovascular (special) VIVAs

Question 1:		i)	What fac	tors determ	ine cerebral blood	(1) Pressures:		
			ompt: What	al: Describe	sure or vascular	MAP Intracranial pressure / extra-cranial venous pressure (whichever is greatest). Intracranial pressure is determined by intracranial blood volume, CSF volume, tissue oedema, SOL. (2) Cerebral arteriole tone Autoregulation Maintains normal CBF at MAPs of 65-140 mmHg (stretch response[myogenic], local [metabolic]); Autoregulation may be lost/impaired by brain injury pCO2 (effect on both arteriole tone and intracranial blood volume) pO2 (at extremes) (3) Blood viscosity		
3.3 Cerebral blood flow. Brain metabolism & O2 requirements Ganong pp 616-620		What factors determine cerebral blood flow? What substances are important for brain metabolism?			Local constr MAP at brai Blood visco: Mean venou Oxygen ~49 Glucose (ma	 Intracranial pressure Local constriction/dilation of cerebral arterioles, autoregulation etc MAP at brain level Blood viscosity Mean venous press at brain level Oxygen ~49ml/min = 20% body O2 consumption Glucose (major energy source) ~77mg/min 		
I.1 Factors affecting cerebral blood dow	regulation Describe	pulating cerebral blood flow autoregulating scribe how blood flow can be imaging autoregulating			•		Kellie doctrine. Cushing reflex. Local ation bl flow with activity. PET and fMRI	
2 a). What chemical factors regulate coronary blood flow			Increases in blood flow occur secondary to coronary va Hypoxia, Locally increased CO2, H+, K+, lactate, PGs, adenine nucleotides, adenosine			asodilation due to:,	Hypoxia plus 3 others	
2 b). Describe the neural regulation of coronary blood flow			Alpha-adrenergic receptors mediate vasoconstriction Beta-adrenergic receptors mediate vasodilation Vagal nerve stimulation dilates coronaries. Noradrenaline constricts coronaries (although noradren and contractility, with resultant metabolite prod and vashypotension that maintains coronary flow)					

TOPIC: Regulation of coronary blood flow NUMBER: 1

OPENING	What	are the factors which affect coronary	PROMPTS	COMMENTS	
QUESTION		flow?			
POINTS REQUIRED	Aortioneural Autor Chem Lactai nucleo Neural chroni metab B-Blo effect via a i B reco Low myoc: Phase esp le Disea diseas press Chem K+, la *Neural	c pressure changes, chemical and factors egulation ical- low O2, Increased CO2, H+, K+, te, prostaglandins, adenine osides, adenosine	Is there any difference in coronary blood flow to the right and left ventricles?	Need 3 factors and 1 example of each.	
1. (a)Describe how tissues regulate their own blood flow.		Most vascular beds have intrinsic capacity to co pressure by changing vascular resistance and t 1. Myogenic theory of autoregulation: Intrinsic contractile response of smooth muscle	Myogenic theory of autoregulation		
Prompt- What are the proposed mechanisms of this process?		As pressure rises: blood vessels are distended contract Law of Laplace: maintenance of given wall tens radius 2. Metabolic theory of autoregulation Vasodilator substances tend to accumulate in a	2. Metabolic theory of autoregulation		
NOTE: 1 II II I		vasoriator substances tend to accumulate in a dilatation When blood flow increases → washed away Hypox, inc Co2, Inc H+, Inc lactate, inc K+, inc	To pass must demonstrate understanding of both		