Question 1.
Ischaemic cell injury

1. What are the stages of ischaemic cell injury?
 - Initial Reversible
 - Irreversible (prolonged ischaemia injury and necrosis)

2. Describe the sequence of events that occur in reversible ischaemic cellular injury.
 - Due to loss of oxidative phosphorylation \rightarrow decreased ATP \rightarrow failure of sodium pump \rightarrow loss of K$^+$; influx of Na$^+$ and H$^+$ \rightarrow iso-osmotic cell swelling.
 - **Increase in Ca$^{++}$** initially released from intracellular stores then influx of Ca$^{++}$ across plasma membrane \rightarrow failure of ATP generation, activation of enzymes, induction of apoptosis \rightarrow membrane and nuclear damage.
 - Decreased cellular pH due to increased lactate (increased anaerobic metabolism)
 - Loss of glycogen, decreased protein synthesis
 - Loss of microvilli, formation of cell surface blebs, myelin figures, mitochondria + ER swelling, ribosome detachment clumping of nuclear chromatin fatty change

3. Describe the morphological changes of irreversible ischaemic injury
 - Severe swelling of mitochondria
 - Extensive damage to plasma membrane
 - Swelling of lysosomes
 - Cell death by necrosis/apoptosis

Notes
- Bold (3 items)

Question 2.
Septic Shock

1. How do microbial constituents initiate septic shock?
 - Interact with **cells of the innate immune system** (Neutrophils/Macrophages/Others) to release inflammatory mediators (& immunosuppressants)
 - Interact with **humoral elements of innate immunity** to activate complement and coagulation pathways
 - Act on **endothelium**

2. What is the effect of endothelial cell activation and injury during septic shock?
 - Thrombosis
 - Increased vascular permeability
 - Vasodilation

3. How does endothelial activation result in DIC (disseminated intravascular coagulation)?
 - Sepsis favours coagulation
 - Increased tissue factor production
 - Decreased fibrinolysis
 - Stasis
 - Decreased washout of activated coagulation factors
 - Results in multiple fibrin rich thrombi
 - Increased hypoperfusion

Notes
- Consumption Coagulopathy = DIC

Consumption Coagulopathy
- DIC
- **Consumptive** and some detail
| Question 3. Hypertension | 1. What factors are thought to contribute to essential hypertension? | Multiple genetic polymorphisms and interacting environmental factors:
Genetic factors
- familial, multi-gene foci interactions
- single gene disorders altering Na reabsorption (rare)
Vasoconstrictive influences
- vasoconstriction/structural change in vessel wall
 -> increase in peripheral resistance -> primary hypertension
Environmental factors
- stress, obesity, smoking, physical inactivity, high salt intake | 2 of 3 bold, with detail |
| --- | --- | --- |
| 2. What are the long term consequences of essential hypertension? | Major risk factor for atherosclerosis
- Coronary artery disease
- Cerebrovascular disease
- Aortic dissection
- Renal failure
- Cardiac hypertrophy
- Cardiac failure
- Multi infarct dementia
- Retinal changes | 4 of 7 consequences |
| 3. Describe the clinical features of malignant hypertension? | Clinical syndrome characterised by
- severe hypertension with SBP > 200, DBP > 120
- renal failure
- encephalopathy
- CVS abnormalities
- retinal haemorrhages
 +/- papilloedema
- often superimposed on previous benign hypertension
- < 5% of hypertensive patients
- rapidly rising BP
- untreated -> death in 1-2 years | Must mention 3 organ systems. |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PROMPTS:</td>
<td>What organisms cause atypical pneumonia?</td>
<td>- Strep pneumoniae</td>
</tr>
<tr>
<td>What organisms cause atypical pneumonia?</td>
<td>What viruses may cause atypical pneumonia?</td>
<td>- Haemophilus influenza</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Moraxella catarrhalis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Staph aureus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Legionella pneumophilia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Others eg klebsiella pneumonia, pseudomonas</td>
</tr>
<tr>
<td>Atypical pneumonia</td>
<td>Viral</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Mycoplasma pneumonia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Chlamydiae spp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Coxielle burnetti (Q fever)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- RSV, parainfluenza, influenza A+B, adeno virus, SARS virus</td>
</tr>
</tbody>
</table>

| Need | Bacteria 3 | Atypical 1 | Viral 1 |

<table>
<thead>
<tr>
<th>2. How do atypical pneumonias differ from classical (typical) bacterial pneumonias</th>
<th>PROMPT; how do the lung changes differ?</th>
<th>Moderate amount sputum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No physical findings of consolidation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Only moderate elevation of WCC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No alveolar infiltrate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Patchy inflammatory changes largely confined to alveolar septa and pulmonary interstitium ie interstitial nature of the inflammation of alveolar exudates in classical pneumonia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Different clinical presentation: few localising signs, cough often absent, typical symptoms are fever, headache, myalgia,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower mortality cf bact pneumonia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(severe disease uncommon)</td>
</tr>
</tbody>
</table>

| Lung changes to pass | Water related |

<table>
<thead>
<tr>
<th>3. How is legionella pneumonia contracted?</th>
<th>Artificial aquatic environment eg water cooling tower, water supply tubing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inhalation of aerosolised droplets</td>
</tr>
<tr>
<td></td>
<td>Or aspiration of contaminated drinking water</td>
</tr>
</tbody>
</table>

| Water related |
| **Question 5.** | **Osteomyelitis** | **1. Describe the pathogenesis of osteomyelitis** | 3 basic methods of infection
• **blood borne** (haematogenous)
• **local infection** (extension contiguous site)
• **trauma/surgery** (direct implantation) | 2/3 |
|----------------|-------------------|---|-----------------|
| | | **3. What Bacterial organisms cause osteomyelitis?** | **S. Aureus**
• Gp B strep (neonatal)
• S. Aureus (> 80%)
Surgery/open fractures
mixed
Patient with UTI or IV drug user
• E. Coli, Pseudomonas, Klebsiella | S. Aureus and 1 other |
| | | **2. What are the changes in the bone that occur in osteomyelitis** | **New bone around area of necrosis**
• Involucrum
• Abscesses
• Sclerosis
• Deformity
• Sequestrum
• Draining sinus | 3 items |

COMMENTS___

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>QUESTION</th>
<th>ESSENTIAL KNOWLEDGE</th>
<th>PASS CRITERIA / COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question 1. Atrophy</td>
<td>1. What is atrophy?</td>
<td>Shrinkage in the size of an organ or tissue due to decrease in cell size and number.</td>
<td>Must know</td>
</tr>
</tbody>
</table>
| | 2. What are the causes of atrophy? | • Disuse
• Denervation
• Diminished blood supply
• Inadequate nutrition
• Loss of endocrine stimulation
• Pressure | At least 4 |
| | 3. Give some examples of atrophy | • Fracture disuse
• damage to nerves causing muscle atrophy
• breast/reproductive organs from oestrogen lack | At least 2 |
| Question 2. Normal Haemostasis | 1. List the sequence of events in normal haemostasis after vascular injury | 1. **Transient vasoconstriction** [Neurogenic & humoral factors (include endothelin – endothelium derived vasoconstrictor)]
2. **Primary haemostatic plug - platelet.**
3. **Secondary haemostatic plug:** coagulation cascade activated by tissue factor and platelet phospholipids, fibrin polymerization “cementing” platelets
4. **Limit spread:** tissue plasminogen activator & thrombomodulin | 3 of 4 bold |
| | 2. Describe the creation of the Primary Haemostatic Plug? | **Platelets** bind via
1. glycoprotein lb (GpIb) receptors to
2. von Willebrand factor (vWF) on
3. exposed extracellular matrix (ECM) are
4. activated undergo
5. shape change and
6. granule release: adenosine diphosphate (ADP) and thromboxane A₂ (TxA₂)
7. additional platelet aggregation through platelet GpIIb-IIIa receptor binding to fibrinogen | 3 of 7 (plus must say platelets) |
Question 3. Tuberculosis

<table>
<thead>
<tr>
<th>1. What is secondary tuberculosis?</th>
<th>Pattern of disease that arises in a previously sensitised host</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. How may infection occur in secondary tuberculosis?</td>
<td>1. May follow shortly after primary infection (<5%)
2. Reactivation of latent organisms
 • Typically in areas of low disease prevalence
3. Reinfection
 • Typical in regions of high prevalence</td>
</tr>
<tr>
<td>3. Describe the pathological features in the lung of secondary infection with TB.</td>
<td>• Locale - apical UL in secondary
• Area of inflammation / granuloma / multinucleate giant cells
• Central caseous necrosis
• Cavitation
• Healing with fibrosis and calcification
• +/- Complications include tissue destruction, erosion of blood vessels, miliary spread, pleural effusion, empyema, fibrous pleuritis</td>
</tr>
</tbody>
</table>

Question 4. Chronic gastritis

1. What are the causes of chronic gastritis?	H Pylori • Chronic bile reflux • NSAIDS • Autoimmune • Allergic response • Infections • Radiation	Mechanical • Psychological stress • Chronic irritants (coffee, alcohol, caffeine) • Systemic disease • (Crohns, amyloid, graft vs host)
2. Describe the features of H pylori induced chronic gastritis	Most common cause • predominantly antral • High acid production • Hypogastrinaemia • Generates ammonia (specific test) • Disruption normal mucosal defence mechanisms	
3. What are the complications of gastric ulcer?	Bleeding (15-20%) • Accounts for 25% of ulcer deaths • Perforation • Obstruction • Gastric adenocarcinoma (complication of chronic H. Pylori pangastritis)	
1. **What is the most frequent cause of subarachnoid haemorrhage?**

 - **Rupture of an aneurysm**
 - (less common causes include ext of traumatic haem, H/T intracerebral bleed into ventricular system, AVM, bleeding disorders, tumour)

2. **Where are saccular aneurysms commonly located?**

 - **Most** near major arterial branch points along the circle of Willis or a major vessel just beyond (= anterior cerebral circulation)
 - 40% ant comm art
 - 34% middle cerebral art
 - 20% int carotid/PICA
 - 4% Basilar/Posterior Cerebral

3. **What are the genetic risk factors for saccular aneurysms?**

 - Generally unknown, not ‘congenital’
 - Some genetic risk
 - Polycystic kidney
 - Ehlers Danlos type 4
 - Neurofibromatosis type 1
 - Marfan’s
 - Fibromuscular dysplasia
 - Aortic coarctation

4. **What are the pathological consequences of subarachnoid haemorrhage?**

 - **Early**
 - vasospasm and additional ischemic injury
 - increased intracranial pressure
 - **Late**
 - meningeal fibrosis & scarring
 - CSF obstruction

<table>
<thead>
<tr>
<th>Question 5. Subarachnoid Haemorrhage</th>
<th>Prompt for “Late”</th>
<th>Need 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rupture of an aneurysm to pass</td>
<td>At least anterior circulation and 1 other to pass</td>
<td>2/6</td>
</tr>
<tr>
<td>Comments:__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOPIC</td>
<td>QUESTION</td>
<td>ESSENTIAL KNOWLEDGE</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>---------------------</td>
</tr>
</tbody>
</table>
| **Question 1.**
Cell Death / Necrosis | 1. Describe the cellular changes in necrosis
PROMPT
Start with the cellular features. | • Usually irreversible injury
• Often adjacent inflammation
• **Swollen cells**
• Increased eosinophilia
• Myelin figures (whorls of cell membrane bits)
• Nucleus fades (karyolysis), may shrink (pyknosis) and then fragments (karyorrhexis)
• Organelle disruption → amorphous mass
• **Cell membrane disrupted**, contents released
• Swelling
• Disruption of cell integrity. | |
| | 2. What are the patterns of tissue necrosis?
PROMPT
What are the different macroscopic appearances of necrotic tissues? | • **Coagulative** (architecture preserved)
• **Liquefactive** (digestion → liquid viscous mass)
• Caseous (friable white)
• "Gangrenous (usually applied to limb. Typically coagulative. Superimposed liquefaction from infection → 'wet gangrene')
• "Fat necrosis (focal areas of fat destruction)
• Fibrinoid (microscopic feature of Ag-Ab complexes in vessel walls from immune mediated) | Coagulative
Liquefactive
Prompt with names needs to describe difference
*these terms clinical not true pathology terms |
| **Question 2.**
Cell derived mediators of inflammation | 1. Which mediators of inflammation are derived from cells? | • Preformed
 o **Vasoactive amines**
 ▪ Histamines
 ▪ Serotonin
 • Newly synthesized
 o **Arachidonic metabolites**
 ▪ Prostaglandins
 ▪ Leukotrienes
 ▪ Lipoxins
 o Reactive Oxygen Species
 o Platelet activating factors
 o Nitric Oxide
 o Cytokines (TNF, IL1)& Chemokines | Pass = bold + 1 other |
| | 2. Which cells release histamine? | Widely distributed in tissues, richest sources:
• **Mast cells**
• **Basophils**
• **Platelets** | Pass =/> 2 |
| | 3. What are the effects of histamines in an inflammatory response? | • Dilation of the arterioles
• **Increased vascular permeability of the venules**
• Can cause constriction of large arteries | Pass = bold (2) |
Question 3. Measles

1. Describe the pathogenesis of measles
 - PROMPTS: What type of virus is measles? What is the mode of transmission?
 - 1. Paramyxovirus (single stranded RNA)
 - 2. Respiratory droplet spread
 - 3. Multiples in upper respiratory tract epithelial cells
 - 4. >lymphoid tissue where it replicates in mononuclear cells
 - 5. Haematogenous spread
 - 6. Preventable by vaccination as only single strain.
 - 7. Epidemics amongst un-vaccinated individuals

2. What type of immune responses occur in measles?
 - 1. T cell mediated immunity controls infection + causes rash
 - 2. Antibody mediated protects against re-infection
 - 3. Epidemics in unvaccinated hosts

3. Describe some of the systemic features of measles virus infection.
 - Prompt: What are some complications of measles infection?
 - 1. Rash – blotchy, red/brown. Skin hypersensitivity reaction
 - 2. Oral mucosal ulceration – Koplik’s spots
 - 3. Croup
 - 4. Interstitial pneumonia
 - 5. Conjunctivitis, Keratitis, scarring and visual loss
 - 6. Encephalitis; - plus SSPE, measles inclusion-body encephalitis
 - 7. Diarrhoea with protein losing enteropathy
 - 8. Immunosuppression
 - 9. Secondary bacterial infection

Question 4. Ischaemic bowel disease

1. What conditions can lead to infarction of bowel?
 - PROMPT; by what mechanisms do these conditions cause injury
 - 1. Acute vascular obstruction
 - atherosclerosis (esp. origin major vessels)
 - aortic aneurysm
 - hypercoagulable states
 - OC use
 - embolism
 - 2. Intestinal hypoperfusion
 - cardiac failure
 - shock
 - dehydration
 - vasoconstrictive drugs
 - Systemic vasculitis
 - Henoch-Schlein purpura
 - Wegener’s granulomatosis
 - Mesenteric venous thrombosis
 - hypercoagulable states
 - invasive neoplasms
 - cirrhosis
 - trauma
 - abdominal masses

2. Describe the intestinal response to an acute ischaemic insult.
 - Prompt: what is the mechanism by which ischaemic bowel injury occurs?
 - 1. Initial hypoxic injury
 - 2. Secondary reperfusion injury
 - major injury in this phase
 - free radical production, neutrophil infiltration, inflammatory mediator release
 - 3. Magnitude of response determined by
 - vessels affected
 - timeframe over which ischaemia develops

3. Which parts of the bowel are most susceptible to acute ischaemic injury and why?
 - Watershed zones
 - splenic flexure, sigmoid colon and rectum
 - located at end of arterial supply
 - Must know that it is predominantly a reperfusion type injury

Surface epithelium: Villi more at risk than crypts
-intestinal caps run from crypts up villi to surface

Must be able to explain why watershed zones are most susceptible to injury.
Question 5. Hepatic Failure

| 1. What are the causes of acute liver failure? | Drugs and toxins: Paracetamol, halothane, rifampicin, mushrooms, CCL4
Infections: hepatitis A, B and (rarely) C.
Mechanism: direct toxic eg paracetamol, mushrooms
Or toxicity and/or immune mediated eg Hepatitis virus | 3 causes - at least 1 drug and 1 infection |
| 2. What are the clinical features of liver failure? | Jaundice
Ascites
Hypoalbuminaemia
Hyperammonemia → encephalopathy
Coagulopathy
Portal hypertension
Foetor hepaticus
Spider naevi
Palmar erythema
Hypogonadism + gynaecomastia | At least 5 features |
| OPTIONAL (Good candidates) What do you understand by hepato-renal syndrome? | Renal failure in pt with severe chronic liver disease with no obvious cause for the renal failure. Features include:
Na retention
Impaired free water excretion
Decreased renal perfusion and GFR | Any features |

Comments: __
__
__
__
__