Cardiovascular

Section 1

- 1 Regarding ECG changes, which is CORRECT?
 - a) hypernatraemia is associated with low voltage complexes
 - b) the first change in hyperkalaemia is prolongation of QRS
 - c) with hypokalaemia, the resting membrane potential decreases
 - d) in hyperkalaemia, the heart stops in systole
 - e) in hypercalcaemia, myocardial contractility is enhanced
- 2 Regarding jugular pressure waves:
 - a) the 'v' wave denotes the increased atrial pressure due to the bulging of the tricuspid valve during isovolumetric ventricular contraction
 - b) in tricuspid insufficiency, there is a giant 'A' wave with each ventricular systole
 - c) atrial premature beats produce an 'A' wave
 - d) the 'v' wave occurs during systole
 - e) a giant 'C' wave ('cannon wave') may be seen in complete heart block
- 3 What factor does not alter cardiac output?
 - a) standing up
 - b) sleeping
 - c) eating
 - d) exercising
 - e) pregnancy
- 4 What is the O₂ consumption of a beating heart at rest?
 - a) 2ml/100g/min
 - b) 9ml/g/min
 - c) 2ml/g/min
 - d) 2L/100g/min
 - e) 9ml/100g/min
- 5 Regarding percentages of blood volume in the body:
 - a) the heart has 5%
 - b) the pulmonary circulation has the greatest percentage
 - c) the venous circulation has 35%
 - d) the aorta has 2%
 - e) capillaries have 20%

- 6 What is a biological action of endothelin?
 - a) dilates vascular smooth muscle
 - b) produces bronchodilation
 - c) increase GFR and renal blood flow
 - d) evokes positive inotropic and chronotropic effects on myocardium
 - e) inhibits gluconeogenesis
- 7 What inhibits gene transcription for endothelin-1 secretion:
 - a) nitric oxide
 - b) angiotensin II
 - c) insulin
 - d) growth factors
 - e) catecholamines
- 8 Regarding NO synthase:
 - a) it synthesises nitrous oxide from arginine
 - b) there are 2 isoforms
 - c) it is inactivated by haemoglobin
 - d) NOS-1 is activated by cytokines
 - e) NOS-2 is in endothelial cells
- 9 What factor dilates the arterioles?
 - a) decreased local temperature
 - b) myogenic theory of autoregulation
 - c) angiotensin II
 - d) increased discharge of noradrenergic vasomotor nerve
 - e) histamine
- 10 Which is NOT a baroreceptor site?
 - a) right atria at the entrance of SVC and IVC
 - b) aortic arch
 - c) left atria at the entrance of the pulmonary veins
 - d) pulmonary circulation
 - e) carotid body
- 11 Regarding cerebrospinal fluid:
 - a) the total volume of CSF is 300mL
 - b) CSF is absorbed through the choroid plexus
 - c) the average CSF pressure is 220m-CSF
 - d) CSF has a higher pH than plasma
 - e) it contains very low levels of cholesterol relative to plasma

- 12 Which substance has equal concentrations in CSF and plasma?
 - a) Ca²
 - b) K⁺
 - c) Na⁺
 - d) PCO₂
 - e) glucose
- 13 Which vessel has the lowest PO₂?
 - a) maternal artery
 - b) maternal vein
 - c) uterine vein
 - d) umbilical vein
 - e) umbilical artery
- 14 During exercise:
 - a) diastolic BP increases more than systolic BP
 - b) regional blood flow to the brain doubles
 - c) cardiac output may increase 15-fold
 - d) after exercise, BP takes longer to return to normal than heart rate
 - e) O₂ consumption of skeletal muscle may increase 100-fold
- 15 Atrial systole:
 - a) causes a decrease in atrial pressure
 - b) causes the 'A' wave of the jugular pulse
 - c) causes the 'C' wave of the jugular pulse
 - d) causes the 'V' wave of the jugular pulse
 - e) causes the dicrotic notch of the aortic pulse
- 16 The depolarisation of cardiac muscle cells is characterised by:
 - a) a slow depolarisation, a plateau then a rapid repolarisation
 - b) initial depolarisation due to a slow Na⁺ influx
 - c) repolarisation due to K⁺ efflux through two types of K⁺ channels
 - d) a plateau phase due to slowly opening Na⁺ channels
 - e) calcium efflux during the plateau phase
- 17 Regarding cardiac electrical properties:
 - a) all cardiac cells have the same resting membrane potential
 - b) cholinergic fibres act predominantly by blocking tonic sympathetic input
 - c) discharge rates of pacemaker tissue does not change significantly with temperature
 - d) the bundle of HIS is not the most rapidly conducting part of the conducting system
 - e) the last parts of myocardium to depolarise normally do not include the septum

- 18 Abnormalities causing ECG changes in myocardial infarction include:
 - a) delayed repolarisation early on
 - b) delayed depolarisation
 - c) increased resting membrane potential
 - d) TQ segment elevation
 - e) current flow away from the infarct
- 19 Features of the venous system include all of the following EXCEPT:
 - a) total volume is approximately 55% of the total vascular volume
 - b) compliance approximately 25 times the arterial side
 - c) total volume of venules is twice the total capillary volume
 - d) valves in the cerebral circulation
 - e) substantial venoconstriction in response to noradrenaline
- 20 Arteriolar constriction is caused by:
 - a) serotonin
 - b) ANP
 - c) NO
 - d) K⁺
 - e) histamine
- 21 Regarding the inputs into the vasomotor centre:
 - a) baroreceptors causes stimulation
 - b) chemoreceptors cause inhibition
 - c) baroreceptors provide significant input below 70mmhg mean arterial pressure
 - d) atrial stretch receptors inhibit the vasomotor centre
 - e) direct inputs include pO₂
- 22 CSF:
 - a) volume is about 600ml
 - b) normal pressure is 5-10cm CSF
 - c) has a higher concentration of creatinine than plasma
 - d) has a higher concentration of urea than plasma
 - e) is formed solely in the choroid plexus

- 23 Regarding arrhythmias, which is TRUE?
 - a) the PR interval is shortened but the QRS normal in length in Lown Ganong Levine syndrome
 - b) with respect to the long QT syndrome, the genetic defect can occur in both Ca²⁺ and Na⁺ channels
 - c) with respect to the long QT syndrome, the genetic defect can occur in both Ca²⁺ and K⁺ channels
 - d) in atrial fibrillation, the atria beat at 200-300bpm, with the ventricles varying from 80-160/minute (irregular) depending on variable AV conduction
 - e) ventricular premature beats are never benign
- 24 With regards to CSF and the blood brain barrier, which is NOT true?
 - a) the concentration of K⁺ in CSF is 2.9???? H₂O
 - b) the concentration of creatinine is approximately equal to that of plasma
 - c) the kety method utilises inhaled N₂O to determine cerebral blood flow
 - d) injection of hypotonic fluids can disrupt the blood brain barrier
 - e) the chemoreceptor trigger zone for vomiting is in the area postnema

25 Foetal circulation, which is TRUE?

- a) HbF has a higher affinity for O₂ than HbA as it binds 2,3DPG more effectively than HbA
- b) the sucking action of the first breath in the newborn, plus constriction of the umbilical veins, squeezes as much as 250ml blood from placenta
- c) bradykinin dilates umbilical veins and the ductus arteriosus, while constricting the pulmonary bed
- d) blood in the umbilical veins is believed to be about 80% saturated with O₂
- e) the placenta is a more efficient gas exchange organ than the adult lungs

26 Regarding the conduction system of the heart:

- a) the right bundle branch (of HIS) divides into anterior and posterior fasicles
- b) the AV node contains P cells
- c) myocardial fibres have a resting membrane potential of -60mV
- d) action potential in the SA and AV nodes are largely due to Na[†] influx
- e) there are two types of K⁺ channels in pacemaker tissue transient and long acting

27 During systole:

- a) the peak left ventricular pressure is 160mmHg
- b) contraction of the atria propels 70% of the ventricular filling
- c) the period of isovolumetric ventricular contraction is 0.5sec????
- d) the end systolic ventricular volume is about 50mL
- e) coronary blood flow to subendocardial portions of the left ventricle occur only in systole

- 28 Regarding cardiac output:
 - a) "energy of contraction is proportional to the initial length of the cardiac muscle fibre" is Fick's Law of the heart
 - b) cardiac index is the correlation between resting cardiac output and height
 - c) sleep decreases cardiac output
 - d) basal O₂ consumption by the myocardium is 2ml/g/min
 - e) standing normally decreases the length of ventricular cardiac muscle fibres
- 29 Effects of electrolyte changes:
 - a) PR interval increases in hyperkalaemia
 - b) in hyperkalaemia, the heart stops in systole
 - c) hypercalcaemia causes prolongation of the ST segments
 - d) hypernatraemia is associated with low voltage electrocardiographic complexes
 - e) magnesium counteracts digitalis toxicity
- 30 Which statement is TRUE regarding cardiac muscle?
 - a) cardiac muscle fibres are multinucleated
 - b) they are smaller than skeletal muscle fibres
 - c) Ca²⁺ release is triggered by membrane repolarisation
 - d) the elastic 'Titin" protein component is greater than in skeletal muscle, adding stiffness
 - e) the amount of Ca²⁺ in the sarcoplasmic reticulum is decreased by catecholamine stimulation
- 31 Which statement regarding cardiac "work" is FALSE?
 - a) the energy applied to the blood stream is defined as kinetic plus potential
 - b) potential energy involves consideration of energy stored in elastic arterial walls and gravity
 - c) there is an exchange between kinetic and potential energy
 - d) the largest drop in energy occurs at the level of the precupillary sphincters
 - e) the higher resistance in smaller calibre vessels corresponds to greater energy losses
- 32 Which statement about blood flow is FALSE?
 - a) cardiac output = stroke volume x heart rate
 - b) the volume of blood pumped through the lungs equals the volume entering the heart
 - c) Poiseville's Law predicts the effects of pressure and resistance on cardiac output
 - d) the resistance of the systemic circulation is 5 to 10 times the pulmonary vascular resistance
 - e) with constant pressure, a vessel with radius '2X' has 16 times the flow of vessel with radius 'X'

- 33 Regarding haemodynamic principles, which statement is FALSE?
 - a) viscosity of blood with haematocrit of 40 is three times that of water
 - b) 'arterial' blood volume is 10-15% total volume
 - c) 'elastance' measures a vessel's stiffness or recoil
 - d) aging causes increased elastance and therefore decrease in resting (unstressed) arterial volume
 - e) an increase in total peripheral resistance leads to increased arterial volume and BP
- 34 Considering conduction rates in myocardial cells, which statement is TRUE?
 - a) Perkinje fibres are subepicardial and are the largest fibres, 4-7 times the width of other fibres
 - b) Perkinje fibres are 'fast fibres', and can conduct a wave of depolarisation at a speed of 4m/sec
 - c) the duration of the action potential and refractory period in fast fibres is shorter than slow fibres
 - d) initial depolarisation occurs in fast fibres with a rapid influx of Ca²⁺ ions from the sarcoplasmic reticulum
 - e) none of the above statements are true
- 35 With respect to splanchnic circulation:
 - a) the liver is approximately 50% blood by volume
 - b) zone 3 of the hepatic acinus is well oxygenated
 - c) abdominal viscera receive at 30% cardiac output
 - d) liver receives blood from hepatic artery (1000???ml/min) and hepatic ??? vein (500ml/min)
 - e) muscular layer of intestinal wall has higher flow of mucosal layer
- 36 Blood pressure:
 - a) the sounds of Korotkoff when taking blood pressure are caused by laminar flow
 - b) the diastolic pressure in resting adults correlates to the muffling of Korotkoff sound
 - c) pressures obtained by palpation of auscultation methods are usually 2-5mmHg higher
 - d) if cuff is inflated for some time, it can give falsely low BP readings
 - e) sounds of Korotkoff occur when velocity of flow through constriction exceeds critical velocity
- 37 Coronary circulation:
 - a) left coronary artery has greater flow in 50% of people
 - b) thebesian veins connect arterioles to the heart chambers
 - c) cusps of the aortic valve occlude orifices of coronary arteries during LV ejection
 - d) coronary flow at rest is 250ml/min
 - e) at rest, heart extracts 50% O₂ / unit of blood delivered

38 Regarding blood vessels:

- a) the large diameter arteries are the major site of resistance to blood flow
- b) true capillaries are about $5\mu m$ in diameter at the arterial end and $9\mu m$ in diameter at the venous end
- c) the aorta wall is 1mm thick
- d) lymphatic endothelium contains fenestrations
- e) angiogenin inhibits angiogenesis

39 Regarding blood flow:

- a) turbulence is always present when ??? is more than 2,000
- b) flow is displacement per unit time (cm/s)
- c) velocity is proportionate to flow multiplied by the area of the conduit
- d) the Poiseville-Hagen formula gives the relation between the flow in a long narrow tube, the viscosity of the fluid and the radius of the tube
- e) whole blood is 7 times as viscous as water
- f) turbulence is more frequent in polycythaemia because the viscosity of the blood is higher

40 Regarding venous circulation:

- a) pressure is higher in the veins compared with the venules
- b) central venous pressure averages 6.4mmHg and fluctuates with respiration and heart action
- c) the drop in venous pressure during expiration aids venous return
- d) peripheral venous pressure is not affected by gravity
- e) venous flow may be pulsitile

41 Which does not cause vasodilation?

- a) decreased O₂ tension
- b) increased temperature
- c) decreased K⁺
- d) increased osmolality
- e) adenosine
- f) decreased pH

42 Regarding vasoactive substances:

- a) endothelial cells produce new cyclooxygen over four days
- b) nitrous oxide synthase in immune cells is induced by increased intracellular calcium concentration
- c) no synthase inhibition leads to a prompt rise in blood pressure
- d) endothelin-1 is a potent vasodilator
- e) angiotensin II inhibits secretion of endothelin-1

- 43 Heart rate is slowed by:
 - a) decreased activity of baroreceptors
 - b) inspiration
 - c) Bainbridge reflex
 - d) stimulation of pain fibres in trigenial nerve
 - e) increased activity of atrial stretch receptors
- 44 In myocardial infarction:
 - a) rapid depolarisation by Ca²⁺ channels is shown by ST segment elevation
 - b) resting membrane potential is increased
 - c) arrhythmias in the first 30 minutes are due to re-entry whereas after 12 hours, the arrhythmias are due to increased automaticity
 - d) after three days arrhythmias are usually due to increased automaticity
 - e) failure to progression of the R wave occurs in infarction of the posterior left ventricle
- 45 Regarding the jugular pulse:
 - a) the 'A' wave occurs prior to atrial systole
 - b) the 'C' wave is the rise in atrial pressure produced by the bulging of the mitral valve into the atria during isovolumetric ventricular contraction
 - c) the 'V' wave occurs during systole
 - d) venous pressure falls in expiration
 - e) cannon waves are giant 'A' waves seen in complete heart block
- 46 Which does NOT stimulate angiogenesis?
 - a) platelet factor IV
 - b) angiogenin
 - c) tissue factor
 - d) IL-8
 - e) tumour necrosis factor α

Cardiovascular

Section 1 – Answers

no answer no answer

no answer no answer no answer no answer no answer no answer no answer no answer

BDEEBDBDBCED

Section 2

- 1 Which statement is FALSE regarding CVS?
 - a) the primary function of the CVS uses convection
 - b) secondary function involves heat control
 - c) the heart is two pumps operating in parallel
 - d) the same volume of blood passes through each semilunar valve over time
 - e) the Frank Starling mechanism is used in balancing the output of both ventricles
- 2 Regarding the heart, which is TRUE?
 - a) the right and left ventricles perform the same amount of work, because the same volume of blood is pumped by each
 - b) the cross sectional shape of both ventricles is approximately cylindrical
 - c) the right ventricle pumps by a bellows type mechanism
 - d) the left ventricle pump action is via reducing cross-sectional area, as a function of radius cubed
 - e) in pulmonary disease the right ventricle hypertrophies and assumes a crescented shape in cross section
- 3 Which is FALSE? Stroke Volume varies with changes in:
 - a) ventricular contractility
 - b) arterial pressure
 - c) end diastolic volume of ventricle
 - d) blood viscosity
 - e) right ventricle compared to left
- 4 Regarding pressure in circulation, which is FALSE?
 - a) kinetic energy = $\frac{\text{M.V}^2}{2}$ (mass x velocity²)
 - b) hydrostatic (gravitational) pressure = potential energy
 - c) the pressure in a foot vein may be 150 cm??? greater than at aortic root (in upright posture)
 - d) the same pressure differential applies in arterial system, (in upright posture)
 - e) the greatest pressure drop occurs in the capillaries
- 5 Regarding volumes in each compartment, which is FALSE?
 - a) 3% in LV and aorta
 - b) 15% in arterial system
 - c) 7% in capillaries
 - d) 50% in venous system (systemic)
 - e) 40% in pulmonary circulation

- 6 Regarding pressures, which is FALSE?
 - a) lateral (static) pressure is reduced but prolonged by elastic arteries
 - b) static pressure increases with gravitation (hydrostatic) pressure increases
 - c) static pressure does not include kinetic energy
 - d) greater resistance to flow through a segment of circulation leads to greater loss of energy through that segment
 - e) kinetic energy becomes more significant in a narrowed segment and converts back to potential energy when the tube widens
- 7 Regarding flow, which is FALSE?
 - a) flow is proportional to pressure gradient
 - b) flow is inversely proportional to resistance
 - c) Poiseville's Law relates flow to pressure gradient and factors that influence resistance
 - d) Poiseville' Law demonstrates that resistance to flow is largely determined by viscosity and length of tube and radius x 4
 - e) if radius of a vessel is <u>halved</u>, the flow may be reduced to 1/16th of previous flow
- 8 Concerning flow, which is TRUE in the circulatory system?
 - a) the volume of flow is predicted by velocity ????
 - b) the widest cross sectional area in the circulation has a flow rate equal to the narrowest
 - c) increased viscosity (haematocrit) of blood does not influence the workload of the heart
 - d) the greatest cross-sectional area in the blood circulation is in the capillary beds
 - e) all of the above are true
- Which statement about factors affecting blood pressure is FALSE? Factors that increase blood pressure are:
 - a) increased heart rate
 - b) increased blood volume
 - c) pressure rises in increased cardiac output until the amount entering the arterial system equals the amount leaving
 - d) increased total peripheral resistance
 - e) increased end systolic volume
- 10 Regarding blood pressure, which is TRUE?
 - a) M.A.P. = pulse pressure / 2 + diastolic pressure
 - b) elastance increases progressively with age
 - c) increase in arterial blood pressure causes a subsequent increase in stroke volume
 - d) increased sympathetic stimulation may sometimes lead to decreased cardiac output
 - e) pulse pressure increases with age because of decreased arterial elastance

- 11 Regarding red blood cells, all are true EXCEPT:
 - a) erythropoiesis is stimulated by anaemia and hypoxia
 - b) after splenectomy, malaria has a higher mortality
 - c) normal adult haemoglobin is designated α_2 β_2
 - d) about 5% of adult haemoglobin is haemoglobin A_2 (α_2 δ_2)
 - e) G6PD deficiency increases red cell susceptibility to lysis by drugs and infection
- 12 Regarding the function of the heart:
 - a) at increased heart rates, diastole is shortened more than systole
 - b) the pericardial sac normally contains about 50ml of fluid
 - c) during the cardiac cycle, left ventricular ejection begins before right ventricular ejection
 - d) during expiration, the aortic valve closes before the pulmonary valve
 - e) the end—diastolic ventricular volume is about 170ml
- 13 Regarding flow in vessels:
 - a) velocity is greatest closest to blood vessel walls
 - b) turbulence is almost always present at a Reynold's number greater than 2,000
 - c) probability of turbulence in a vessel is directly related to twice the radius
 - d) flow in vessels is directly related to the fourth power of the ?????
 - e) turbulence is related to increasing radius
- Which of the following does not increase the length of ventricular cardiac muscle fibres?
 - a) increased total blood volume
 - b) increased venous tone
 - c) increased pumping action of skeletal muscle
 - d) increased negative intrathoracic pressure
 - e) increased intrapericardial pressure
- 15 Which of the following does not cause a systolic murmur?
 - a) aortic stenosis
 - b) anaemia
 - c) mitral insufficiency
 - d) tricuspid stenosis
 - e) normal flow in children
- 16 Timing of events in the cardiac cycle:
 - a) right atrial systole begins after left atrial systole
 - b) the pulmonary closes after the aortic in inspiration
 - c) right ventricular ejection starts after left ventricular ejection
 - d) right ventricular systole starts after left ventricular systole
 - e) right and left atrial systole are synchronous

- 17 Starling's Law of the heart:
 - a) is an example of hetermeric regulation
 - b) is an example of homomeric regulation
 - c) is explained by troponin / tropomyosin overlap
 - d) relates stroke volume to cardiac output
 - e) bears little relation to in vivo regulation of the heart
- 18 The least frequent "ABO" gene is:
 - a) A
 - b) B
 - c) O
 - d) AB
 - e) ABO
- 19 Stimulation of the right vagus:
 - a) increases calcium inflow to the SA node
 - b) decreases calcium inflow to the AV node
 - c) increases potassium outflow in the SA node
 - d) increases potassium outflow in the AV node
 - e) decreases potassium outflow in the SA node
- 20 Starling's Law:
 - a) defines a linear relationship between wall tension and force of contraction of cardiac muscle
 - b) is approximated by representing wall tension as preload and force of contraction as afterload
 - c) predicts greater force of contraction when filling pressure is decreased (eg during shock)
 - d) is explained by an increased availability of intracellular Ca²⁺
 - e) describes heterometric autoregulation
- 21 Pacemaker cells of the SA nodes:
 - a) have an unstable membrane potential due to lack of sodium channels
 - b) display a 'prepotential' prior to depolarisation due to opening of slow calcium channels
 - do not 'overshoot' to the same degree as ordinary cardiac myocytes during depolarisation
 - d) control heart rate by virtue of the relatively large numbers of contractile fibres they contain
 - e) are primarily innervated by the left vagus nerve

22 Capillaries:

- a) contain approximately 20% of the blood volume at rest
- b) are often collapsed
- c) exchange fluids between the vascular compartment and ISF primarily by filtration
- d) are well innervated
- e) respond to metabolites such as K⁺, H⁺ and heat by (vaso)dilating

Section 2 – Answers

```
С
1
2
      С
3
     Ε
4
     Ε
5
     Ε
6
7
      В
      D
8
     B, D
9
      Ε
10
      В
11
      D
12
      Α
     С
13
14
      Ε
15
      D
16
      В
17
      Α
18
      В
19
      С
20
      Ε
21
      no answer
22
      no answer
```

Viva questions on vascular distensibility and function of the arterial and venous system

- 1 Draw and describe the volume-pressure curve in the left ventricle
- 2 Describe the effects of systolic and diastolic dysfunction on the curve
- 3 Name the aides to venous flow
- 4 Describe the three venous waves
- 5 What are pulse pressure and mean pressure
- 6 Explain oedema and give causes for it
- 7 Explain La Places Law and give examples of its clinical relevance
- 8 Explain Starling forces and fluid ?????? and the capillary